Effect of electronic doping and traps on carrier dynamics in tin halide perovskites.
Journal
Materials horizons
ISSN: 2051-6355
Titre abrégé: Mater Horiz
Pays: England
ID NLM: 101623537
Informations de publication
Date de publication:
06 Jun 2022
06 Jun 2022
Historique:
pubmed:
6
5
2022
medline:
6
5
2022
entrez:
5
5
2022
Statut:
epublish
Résumé
Tin halide perovskites have recently emerged as promising materials for low band gap solar cells. Much effort has been invested on controlling the limiting factors responsible for poor device efficiencies, namely self-p-doping and tin oxidation. Both phenomena are related to the presence of defects; however, full understanding of their implications in the optoelectronic properties of the material is still missing. We provide a comprehensive picture of the competing radiative and non-radiative recombination processes in tin-based perovskite thin films to establish the interplay between doping and trapping by combining photoluminescence measurements with trapped-carrier dynamic simulations and first-principles calculations. We show that pristine Sn perovskites,
Identifiants
pubmed: 35510702
doi: 10.1039/d2mh00008c
pmc: PMC9390658
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1763-1773Références
Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3447-50
pubmed: 26889919
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):12353-12361
pubmed: 32045207
Sci Rep. 2014 Mar 26;4:4467
pubmed: 24667758
J Am Chem Soc. 2017 May 17;139(19):6693-6699
pubmed: 28438016
Adv Mater. 2021 Oct;33(40):e2102300
pubmed: 34432925
Adv Mater. 2019 Nov;31(47):e1803792
pubmed: 30680809
Nat Commun. 2019 Jun 12;10(1):2560
pubmed: 31189871
Adv Sci (Weinh). 2017 Jul 14;4(11):1700204
pubmed: 29201617
Nat Commun. 2020 Jan 30;11(1):611
pubmed: 32001711
Angew Chem Int Ed Engl. 2019 May 13;58(20):6688-6692
pubmed: 30884017
Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710
pubmed: 9986014
J Am Chem Soc. 2016 Oct 19;138(41):13604-13611
pubmed: 27665763
ACS Omega. 2020 Nov 13;5(46):29631-29641
pubmed: 33251399
Adv Mater. 2018 Nov;30(44):e1804506
pubmed: 30222220
ACS Energy Lett. 2021 Feb 12;6(2):609-611
pubmed: 33614965
Adv Mater. 2014 Nov 5;26(41):7122-7
pubmed: 25212785
J Phys Chem Lett. 2020 May 7;11(9):3546-3556
pubmed: 32298590
J Phys Chem Lett. 2016 Oct 20;7(20):4178-4184
pubmed: 27715054
Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21583-21591
pubmed: 34228886
Phys Rev Lett. 2009 Jan 9;102(1):016402
pubmed: 19257218
J Chem Theory Comput. 2010 Aug 10;6(8):2348-64
pubmed: 26613491
J Phys Condens Matter. 2009 Sep 30;21(39):395502
pubmed: 21832390
ACS Energy Lett. 2021 Jul 9;6(7):2413-2426
pubmed: 34307880
J Am Chem Soc. 2016 Mar 30;138(12):3974-7
pubmed: 26960020
J Am Chem Soc. 2016 Nov 9;138(44):14750-14755
pubmed: 27750426
Adv Sci (Weinh). 2020 Mar 14;7(9):1903047
pubmed: 32382478
J Chem Phys. 2007 Sep 21;127(11):114105
pubmed: 17887826