Brain size and behavioral specialization in the jataí stingless bee (Tetragonisca angustula).

behavioral specialization jataí bees neural plasticity optic lobes soldier subcaste

Journal

The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041

Informations de publication

Date de publication:
09 2022
Historique:
revised: 11 04 2022
received: 12 08 2021
accepted: 13 04 2022
pubmed: 6 5 2022
medline: 15 7 2022
entrez: 5 5 2022
Statut: ppublish

Résumé

Social insects are instructive models for understanding the association between investment in brain size and behavioral variability because they show a relatively simple nervous system associated with a large set of complex behaviors. In the jataí stingless bee (Tetragonisca angustula), division of labor relies both on age and body size differences among workers. When young, both minors and soldiers engage in intranidal tasks and move to extranidal tasks as they age. Minors switch to foraging activities, while soldiers take over defensive roles. Nest defense performed by soldiers includes two different tasks: (1) hovering around the nest entrance for the detection and interception of heterospecific bees (a task relying mostly on vision) and (2) standing at the nest entrance tube for inspection of returning foragers and discrimination against conspecific non-nestmates based on olfactory cues. Here, using different-sized individuals (minors and soldiers) as well as same-sized individuals (hovering and standing soldiers) performing distinct tasks, we investigated the effects of both morphological and behavioral variability on brain size. We found a negative allometric growth between brain size and body size across jataí workers, meaning that minors had relatively larger brains than soldiers. Between soldier types, we found that hovering soldiers had larger brain compartments related to visual processing (the optic lobes) and learning (the mushroom bodies). Brain size differences between jataí soldiers thus correspond to behavioral specialization in defense (i.e., vision for hovering soldiers) and illustrate a functional neuroplasticity underpinning division of labor.

Identifiants

pubmed: 35513351
doi: 10.1002/cne.25333
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2304-2314

Subventions

Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 169292/2017-7
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil
Organisme : Fondation Fyssen (France)
Organisme : Agence Nationale de la Recherche (ANR) - France
ID : ANR-20-CE34-0017-01

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Arganda, S., Hoadley, A. P., Razdan, E. S., Muratore, I. B., & Traniello, J. F. A. (2020). The neuroplasticity of division of labor: Worker polymorphism, compound eye structure and brain organization in the leafcutter ant Atta cephalotes. Journal of Comparative Physiology A, 206, 651-662.
Baudier, K. M., Ostwald, M. M., Grüter, C., Segers, F. H. I. D., Roubik, D. W., Pavlic, T. P., Pratt, S. C., Fewell, J. H., & Fewell, J. H. (2019). Changing of the guard: Mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behavioral Ecology, 30(4), 1041-1049. https://doi.org/10.1093/beheco/arz047
Baudier, K. M., Bennett, M. M., Barrett, M., Cossio, F. J., Wu, R. D., O'Donnell, S., Pavlic, T., & Fewell, J. H. (2021). Soldier neural architecture is temporarily modality specialized but poorly predicted by repertoire size in the stingless bee Tetragonisca angustula. Journal of Comparative Neurology, 530(4), 672-682.
Bausenwein, B., Dittrich, A. P. M., & Fischbach, K. F. (1992). The optic lobe of Drosophila melanogaster - II. Sorting of retinotopic pathways in the medulla. Cell & Tissue Research, 267(1), 17-28. https://doi.org/10.1007/BF00318687
Bausenwein, B., & Fischbach, K. F. (1992). Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell & Tissue Research, 270(1), 25-35. https://doi.org/10.1007/BF00381876
Bertossa, R. C. (2011). Morphology and behaviour: Functional links in development and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1574), 2056-2068. https://doi.org/10.1098/rstb.2011.0035
Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Reviews Entomology, 46, 413-440.
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats (paramedian lobule/neural plasticity/exercise). Proceedings of the Natiional Academy of Sciences of the United States of America, 87, 5568-5572.
Blomquist, G. J., & Bagnères, A. G. (2010). Structure and analysis of insect hydrocarbons. In: G. J. Blomquist (Ed.). Insect hydrocarbons (pp. 19-34). Cambridge: Cambridge University Press.
Bos, N., & d'Ettorre, P. (2012). Recognition of social identity in ants. Frontiers in Psychology, 3, 1-6.
Bowden, R. M., Garry, M. F., & Breed, M. D. (1994). Discrimination of con- and heterospecific bees by Trigona (Tetragonisca) angustula guards. Journal of the Kansas Entomological Society, 67, 137-139.
Brand, P., Larcher, V., Couto, A., Sandoz, J. C., & Ramirez, S. R. (2018). Sexual dimorphism in visual and olfactory brain centers in the perfume-collecting orchid bee Euglossa dilemma (Hymenoptera, Apidae). Journal of Comparative Neurology, 526(13), 2068-2077.
Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege, H. C., & Menzel, R. (2005). Three-dimensional average-shape atlas of the honeybee brain and its applications. Journal of Comparative Neurology, 492(1), 1-19. https://doi.org/10.1002/cne.20644
Camargo, R. S., Forti, L. C., Lopes, J. F. S., Andrade, A. P. P., & Ottati, A. L. T. (2007). Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). Journal of Applied Entomology, 131(2), 139-145. https://doi.org/10.1111/j.1439-0418.2006.01129.x
Devoogd, T. J., Nixdorf, B., & Nottebohm, F. (1985). Synaptogenesis and changes in synaptic morphology related to acquisition of a new behavior. Brain Research, 329(1-2), 304-308. https://doi.org/10.1016/0006-8993(85)90539-6
Durst, C., Eichmüller, S., & Menzel, R. (1994). Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behavioral and Neural Biology, 62(3), 259-263. https://doi.org/10.1016/S0163-1047(05)80025-1
el Jundi, B., Pfeiffer, K., & Homberg, U. (2011). A distinct layer of the medulla integrates Sky compass signals in the brain of an insect. PLoS One, 6(11), e27855. https://doi.org/10.1371/journal.pone.0027855
Fahrbach, S. E., Moore, D., Capaldi, E. A., Farris, S. M., & Robinson, G. E. (1998). Experience-expectant plasticity in the mushroom bodies of the honeybee. Learning & Memory, 5, 115-123.
Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S., & Traniello, J. F. A. (2019). Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLoS One, 14, e0213618. https://doi.org/10.1371/journal.pone.0213618
Gronenberg, W. (2008). Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. Myrmecol News, 11, 25-36.
Gronenberg, W., & Couvillon, M. J. (2010). Brain composition and olfactory learning in honey bees. Neurobiology of Learning and Memory, 93(3), 435-443.
Groothuis, J., & Smid, H. M. (2017). Nasonia parasitic wasps escape from Haller's rule by diphasic, partially isometric brain-body size scaling and selective neuropil adaptations. Brain Behavior and Evolution, 90(3), 243-254. https://doi.org/10.1159/000480421
Grosso, A. F., & Bego, L. R. (2002). Labor division, average life span, survival curve, and nest architecture of Tetragonisca angustula angustula (Hymenoptera, Apinae, Melipohini). Sociobiology, 40, 615-637.
Grüter, C., Kärcher, M. H., & Ratnieks, F. L. W. (2011). The natural history of nest defence in a stingless bee, Tetragonisca angustula (Latreille) (Hymenoptera: Apidae), with two distinct types of entrance guards. Neotropical Entomology, 40(1), 55-61. https://doi.org/10.1590/S1519-566x2011000100008
Grüter, C., Menezes, C., Imperatriz-Fonseca, V. L., & Ratnieks, F. L. W. (2012). A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1182-1186. https://doi.org/10.1073/pnas.1113398109
Grüter, C., Segers, F. H. I. D., Menezes, C., Vollet-Neto, A., Falcón, T., von Zuben, L., Bitondi, M. M. G., Nascimento, F. S., & Almeida, E. A. B. (2017). Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nature Communications, 8(1), 6-13. https://doi.org/10.1038/s41467-016-0012-y
Haller, A. (1762). Elementa physiologiae corporis humani (vol. IV). Lausanne.
Hammel, B., Vollet-Neto, A., Menezes, C., Nascimento, F. S., Engels, W., & Grüter, C. (2015). Soldiers in a stingless bee: Work rate and task repertoire suggest they are an elite force. American Naturalist, 187(1), 120-129. https://doi.org/10.1086/684192
Hauber, M. E., & Sherman, P. W. (2001). Self-referent phenotype matching: Theoretical considerations and empirical evidence. Trends in Neurosciences, 24, 609-616.
Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge, England: Harvard University Press.
Ilieş, J., Muscedere, M. L., & Traniello, J. F. A. (2015). Neuroanatomical and morphological trait clusters in the ant genus Pheidole: Evidence for modularity and integration in brain structure. Brain Behavior and Evolution, 85(1), 63-76. https://doi.org/10.1159/000370100
Ismail, N., Robinson, G. E., & Fahrbach, S. E. (2006). Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 207-211. https://doi.org/10.1073/pnas.0508318102
Jones, S. M., van Zweden, J. S., Grüter, C., Menezes, C., Alves, D. A., Nunes-Silva, P., Czaczkes, P., Imperatriz-Fonseca, V. L., & Ratnieks, F. L. W. (2012). The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behavioral Ecology and Sociobiology, 66(1), 1-12. https://doi.org/10.1007/s00265-011-1246-7
Julian, G. E., & Gronenberg, W. (2002). Reduction of brain volume correlates with behavioral changes in queen ants. Brain, Behavior and Evolution, 60(3), 152-164. https://doi.org/10.1159/000065936
Kärcher, M. H., & Ratnieks, F. L. W. (2009). Standing and hovering guards of the stingless bee Tetragonisca angustula complement each other in entrance guarding and intruder recognition. Journal of Apicultural Research, 48(3), 209-214. https://doi.org/10.3896/IBRA.1.48.3.10
Kaspari, M., & Weiser, M. D. (1999). The size-grain hypothesis and interspecific scaling in ants. Fuctional Ecology, 13, 530-538. https://doi.org/10.1046/j.1365-2435.1999.00343.x
Kelber, A., & Zeil, J. (1990). A robust procedure for visual stabilisation of hovering flight position in guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae). Journal of Comparative Physiology A, 167(4), 569-577. https://doi.org/10.1007/BF00190828
Kelber, C., Rössler, W., Roces, F., & Kleineidam, C. J. (2009). The antennal lobes of fungus-growing ants (Attini): Neuroanatomical traits and evolutionary trends. Brain, Behavior and Evolution, 73(4), 273-284. https://doi.org/10.1159/000230672
Kuebler, L. S., Kelber, C., & Kleineidam, C. J. (2010). Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). Journal of Comparative Neurology, 518(3), 352-365. https://doi.org/10.1002/cne.22217
Kurylas, A. E., Rohfling, T., Krofczik, S., Jenett, A., & Homberg, U. (2008). Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell and Tissue Research, 333(1), 125-145.
Lacy, R. C., & Sherman, P. W. (1983). Kin recognition by phenotype matching. American Naturalist, 121, 489-512. https://doi.org/10.1086/284078
Legendre, P. (2018). lmodel2: Model II regression. R package version 1.7-3. https://CRAN.R-project.org/package=lmodel2
Lenth, R. (2020). Emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.0. https://CRAN.R-project.org/package=emmeans
Lüdecke, D. (2021). sjPlot: Data visualization for statistics in social science. R package version 2.8.7. https://CRAN.R-project.org/package=sjPlot
Maleszka, J., Barron, A. B., Helliwell, P. G., & Maleszka, R. (2009). Effect of age, behaviour and social environment on honey bee brain plasticity. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(8), 733-740. https://doi.org/10.1007/s00359-009-0449-0
Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 1-5. https://doi.org/10.3389/fncel.2019.00066
Morel, L., & Blum, M. (1988). Nestmate recognition in Camponotus floridanus callow worker ants-Are sisters or nestmates recognized? Animal Behaviour, 36, 718-725.
Muratore, I. B., Fandozzi, E. M., & Traniello, J. F. A. (2022). Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 208(2), 325-344.
Muscedere, M. L., & Traniello, J. F. A. (2012). Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLoS One, 7(2), e31618. https://doi.org/10.1371/journal.pone.0031618
Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211(11), 1792-1804. https://doi.org/10.1242/jeb.017574
O'Donnell, S., & Bulova, S. (2017). Development and evolution of brain allometry in wasps (Vespidae): Size, ecology and sociality. Current Opinion in Insect Science, 22, 54-61. https://doi.org/10.1016/j.cois.2017.05.014
O'Donnell, S., Bulova, S. J., DeLeon, S., Barrett, M., & Fiocca, K. (2017). Caste differences in the mushroom bodies of swarm-founding paper wasps: Implications for brain plasticity and brain evolution (Vespidae, Epiponini). Behavioral Ecology and Sociobiology, 71(8), 1-9. https://doi.org/10.1007/s00265-017-2344-y
O'Donnell, S., Bulova, S., Barrett, M., & von Beeren, C. (2018). Brain investment under colony-level selection: Soldier specialization in Eciton army ants (Formicidae: Dorylinae). BMC Zoology, 3(1), 1-6. https://doi.org/10.1186/s40850-018-0028-3
Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in social insects. Princeton, NJ: Princeton University Press.
Paulk, A. C., Phillips-Portillo, J., Dacks, A. M., Fellous, J. M., & Gronenberg, W. (2008). The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. Journal of Neuroscience, 28, 6319-6332.
Paulk, A. C., Dacks, A. M., Phillips-Portillo, J., Fellous, J. M., & Gronenberg, W. (2009). Visual processing in the central bee brain. Journal of Neuroscience, 29(32), 9987-9999. https://doi.org/10.1523/JNEUROSCI.1325-09.2009
Powell, S., & Franks, N. R. (2005). Caste evolution and ecology: A special worker for novel prey. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2173-2180. https://doi.org/10.1098/rspb.2005.3196
Powell, S., & Franks, N. R. (2006). Ecology and the evolution of worker morphological diversity: A comparative analysis with Eciton army ants. Functional Ecology, 20(6), 1105-1114. https://doi.org/10.1111/j.1365-2435.2006.01184.x
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rettenmeyer, C. W. (1963). Behavioral studies of army ants. University of Kansas Science Bulletin, 44(9), 281-465.
Ribi, W. A., & Scheel, M. (1981). The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Cell and Tissue Research, 221, 17-43.
Riveros, A. J., & Gronenberg, W. (2010). Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain, Behavior and Evolution, 75(2), 138-148. https://doi.org/10.1159/000306506
Riveros, A. J., Seid, M. A., & Wcislo, W. T. (2012). Evolution of brain size in class-based societies of fungus-growing ants (Attini). Animal Behaviour, 83(4), 1043-1049.
Rybak, J. (2012). The digital honey bee brain atlas. In G. C. Galizia, D. Eisenhardt, & M. Giurfa, (Eds.). Honeybee neurobiology and behavior (pp. 125-140).
Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287-293.
Seid, M. A., Goode, K., Li, C., & Traniello, F. A. (2008). Age- and subcaste-related patterns of serotonergic immunoreactivity in the optic lobes of the ant Pheidole dentata. Developmental Neurobiology, 68, 1325-1333.
Seid, M. A., Castillo, A., & Wcislo, W. T. (2011). The allometry of brain miniaturization in ants. Brain, Behavior and Evolution, 77(1), 5-13. https://doi.org/10.1159/000322530
Stieb, S. M., Muenz, T. S., Wehner, R., & Rossler, W. (2010). Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Developmental Neurobiology, 70(6), 408-423. https://doi.org/10.1002/dneu.20785
Strausfeld, N. J. (1989). Beneath the compound eye: Neuroanatomical analysis and physiological correlates in the study of insect vision. In: D. G. Stavenga & R. C. Hardie, Facets of vision (pp. 317-359). Berlin, Heidelberg: Springer.
Turner, A. M., & Greenough, W. T. (1985). Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Research, 329(1-2), 195-203. https://doi.org/10.1016/0006-8993(85)90525-6
van Zweden, J. S., Grüter, C., Jones, S. M., & Ratnieks, F. L. W. (2011). Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra- and inter-specific comparisons. Behavioral Ecology and Sociobiology, 65(6), 1277-1282. https://doi.org/10.1007/s00265-011-1141-2
Weber, N. A. (1972). Gardening ants, the attines. Science, 178(4063), 856.
Wehner, R., Fukushi, T., & Isler, K. (2007). On being small: Brain allometry in ants. Brain Behavior and Evolution, 69, 220-228.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A grammar of data manipulation. R package version 1.0.2. https://CRAN.R-project.org/package=dplyr
Wilson, E. O. (1980). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology, 7(2), 143-156. https://doi.org/10.1007/bf00299520
Withers, G. S., Fahrbach, S. E., & Robinson, G. E. (1993). Selective neuroanatomical plasticity and division of labour in the honeybee. Nature, 364(6434), 238-240. https://doi.org/10.1038/364238a0
Wittmann, D. (1985). Aerial defense of the nest by workers of the stingless bee Trigona (Tetragonisca) angustula (Latreille) (Hymenoptera: Apidae). Behavioral Ecology and Sociobiology, 16(2), 111-114. https://doi.org/10.1007/BF00295143
Wolff, J. R., & Missler, M. (1992). Synaptic reorganization in developing and adult nervous systems. Annals of Anatomy, 174(5), 393-403. https://doi.org/10.1016/S0940-9602(11)80257-8
Zeil, J., & Wittmann, D. (1993). Landmark orientation during the approach to the nest in the stingless bee Trigona (Tetragonisca) angustula (Apidae, Meliponinae). Insectes Sociaux, 40(4), 381-389. https://doi.org/10.1007/BF01253901

Auteurs

Lohan Valadares (L)

Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France.

Bruno Gusmão Vieira (BG)

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.

Fabio Santos do Nascimento (F)

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.

Jean-Christophe Sandoz (JC)

Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH