Harnessing the liver to induce antigen-specific immune tolerance.

Antigen presentation Autoimmune disease Immune tolerance Immunotherapy Nanomedicine Scavenger cells

Journal

Seminars in immunopathology
ISSN: 1863-2300
Titre abrégé: Semin Immunopathol
Pays: Germany
ID NLM: 101308769

Informations de publication

Date de publication:
07 2022
Historique:
received: 16 02 2022
accepted: 20 04 2022
pubmed: 6 5 2022
medline: 8 7 2022
entrez: 5 5 2022
Statut: ppublish

Résumé

Autoimmune diseases develop when the adaptive immune system attacks the body's own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.

Identifiants

pubmed: 35513495
doi: 10.1007/s00281-022-00942-8
pii: 10.1007/s00281-022-00942-8
pmc: PMC9256566
doi:

Substances chimiques

Autoantigens 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

475-484

Informations de copyright

© 2022. The Author(s).

Références

Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345:340–350. https://doi.org/10.1056/NEJM200108023450506
doi: 10.1056/NEJM200108023450506 pubmed: 11484692
NIH Autoimmune Diseases Coordinating Committee (2005) Progress in autoimmune diseases research. https://www.niaid.nih.gov/sites/default/files/adccfinal.pdf . Accessed 13 January 2022
Dinse GE, Parks CG, Weinberg CR, Co CA, Wilkerson J, Zeldin DC, Chan EKL, Miller FW (2020) Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol 72:1026–1035. https://doi.org/10.1002/art.41214
doi: 10.1002/art.41214 pubmed: 32266792 pmcid: 7255943
Goebels N, Hofstetter H, Schmidt S, Brunner C, Wekerle H, Hohlfeld R (2000) Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123:508–518. https://doi.org/10.1093/brain/123.3.508 (PMID: 10686174)
doi: 10.1093/brain/123.3.508 pubmed: 10686174
Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, Kuranda K, Nigi L, Eugster A, Østerbye T, Maugein A, McLaren JE, Ladell K, Larger E, Beressi JP, Lissina A, Appay V, Davidson HW, Buus S, Price DA, Kuhn M, Bonifacio E, Battaglia M, Caillat-Zucman S, Dotta F, Scharfmann R, Kyewski B, Mallone R, ImMaDiab Study Group (2018) Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol 3:eaao4013. https://doi.org/10.1126/sciimmunol.aao4013
doi: 10.1126/sciimmunol.aao4013 pubmed: 29429978 pmcid: 5874133
Lee S, Ko Y, Kim TJ (2020) (2020) Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 17:561–569. https://doi.org/10.1038/s41423-020-0445-4
doi: 10.1038/s41423-020-0445-4 pubmed: 32382130 pmcid: 7264189
Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199. https://doi.org/10.1002/eji.1830110307
doi: 10.1002/eji.1830110307 pubmed: 6165588
Cebula A, Kuczma M, Szurek E, Pietrzak M, Savage N, Elhefnawy WR, Rempala G, Kraj P, Ignatowicz L (2019) Dormant pathogenic CD4
doi: 10.1038/s41467-019-12820-3 pubmed: 31653839 pmcid: 6814812
Cohen IR (2000) Discrimination and dialogue in the immune system. Semin Immunol 12:215–9. https://doi.org/10.1006/smim.2000.0234 (discussion 257-344)
doi: 10.1006/smim.2000.0234 pubmed: 10910742
Parish IA, Heath WR (2008) Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol Cell Biol 86:146–152. https://doi.org/10.1038/sj.icb.7100161
doi: 10.1038/sj.icb.7100161 pubmed: 18227854
Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW (2004) Autoreactive T cells in healthy individuals. J Immunol 172:5967–5972. https://doi.org/10.4049/jimmunol.172.10.5967
doi: 10.4049/jimmunol.172.10.5967 pubmed: 15128778
Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J, Mariani TJ, Sparwasser T, Way SS, Moon JJ (2015) CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 243:896–908. https://doi.org/10.1016/j.immuni.2015.10.011
doi: 10.1016/j.immuni.2015.10.011
Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787. https://doi.org/10.1016/j.cell.2008.05.009
doi: 10.1016/j.cell.2008.05.009 pubmed: 18510923
Carambia A, Freund B, Schwinge D, Heine M, Laschtowitz A, Huber S, Wraith DC, Korn T, Schramm C, Lohse AW, Heeren J, Herkel J (2014) TGF-β-dependent induction of CD4
doi: 10.1016/j.jhep.2014.04.027 pubmed: 24798620
Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18:716–724. https://doi.org/10.1038/ni.3731
doi: 10.1038/ni.3731 pubmed: 28632714 pmcid: 5791156
Rosenblum MD, Gratz IK, Paw JS, Abbas AK (2012) Treating human autoimmunity: current practice and future prospects. Sci Transl Med 4:125sr1. https://doi.org/10.1126/scitranslmed.3003504
doi: 10.1126/scitranslmed.3003504 pubmed: 22422994 pmcid: 4061980
Sabatos-Peyton CA, Verhagen J, Wraith DC (2010) Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr Opin Immunol 22:609–615. https://doi.org/10.1016/j.coi.2010.08.006
doi: 10.1016/j.coi.2010.08.006 pubmed: 20850958 pmcid: 2977065
Streeter HB, Wraith DC (2021) Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol 70:75–81. https://doi.org/10.1016/j.coi.2021.03.019
doi: 10.1016/j.coi.2021.03.019 pubmed: 33878516 pmcid: 8376632
Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776. https://doi.org/10.1016/j.cell.2010.03.006
doi: 10.1016/j.cell.2010.03.006 pubmed: 20303867
Wehrens EJ, Prakken BJ, van Wijk F (2013) T cells out of control–impaired immune regulation in the inflamed joint. Nat Rev Rheumatol 9:34–42. https://doi.org/10.1038/nrrheum.2012.149 (PMID: 23390638)
doi: 10.1038/nrrheum.2012.149 pubmed: 23390638
Hilligan KL, Ronchese F (2020) Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 17:587–599. https://doi.org/10.1038/s41423-020-0465-0
doi: 10.1038/s41423-020-0465-0 pubmed: 32433540 pmcid: 7264306
Carambia A, Herkel J (2018) Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 40:175–188. https://doi.org/10.1007/s00281-017-0659-4
doi: 10.1007/s00281-017-0659-4 pubmed: 29110070
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK (2021) The scavenger function of liver sinusoidal endothelial cells in health and disease. Front Physiol 12:757469. https://doi.org/10.3389/fphys.2021.757469
doi: 10.3389/fphys.2021.757469 pubmed: 34707514 pmcid: 8542980
Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14:996–1006. https://doi.org/10.1038/ni.2691
doi: 10.1038/ni.2691 pubmed: 24048121
Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215:744–745. https://doi.org/10.1038/215744a0
doi: 10.1038/215744a0 pubmed: 6059543
Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, Binns RM, Davies DA (1969) Induction of immunological tolerance by porcine liver allografts. Nature 223:472–476. https://doi.org/10.1038/223472a0
doi: 10.1038/223472a0 pubmed: 4894426
Lüth S, Huber S, Schramm C, Buch T, Zander S, Stadelmann C, Brück W, Wraith DC, Herkel J, Lohse AW (2008) Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest 118:3403–3410. https://doi.org/10.1172/JCI32132
doi: 10.1172/JCI32132 pubmed: 18802476 pmcid: 2542846
Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766. https://doi.org/10.1038/nri2858
doi: 10.1038/nri2858 pubmed: 20972472
Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54-62. https://doi.org/10.1002/hep.21060 (PMID: 16447271)
doi: 10.1002/hep.21060 pubmed: 16447271
Huang LR, Wohlleber D, Reisinger F, Jenne CN, Cheng RL, Abdullah Z, Schildberg FA, Odenthal M, Dienes HP, van Rooijen N, Schmitt E, Garbi N, Croft M, Kurts C, Kubes P, Protzer U, Heikenwalder M, Knolle PA (2013) Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 14:574–583. https://doi.org/10.1038/ni.2573
doi: 10.1038/ni.2573 pubmed: 23584070
Kern M, Popov A, Scholz K, Schumak B, Djandji D, Limmer A, Eggle D, Sacher T, Zawatzky R, Holtappels R, Reddehase MJ, Hartmann G, Debey-Pascher S, Diehl L, Kalinke U, Koszinowski U, Schultze J, Knolle PA (2010) Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138:336–346. https://doi.org/10.1053/j.gastro.2009.08.057
doi: 10.1053/j.gastro.2009.08.057 pubmed: 19737567
Bonnardel J, T’Jonck W, Gaublomme D, Browaeys R, Scott CL, Martens L, Vanneste B, De Prijck S, Nedospasov SA, Kremer A, Van Hamme E, Borghgraef P, Toussaint W, De Bleser P, Mannaerts I, Beschin A, van Grunsven LA, Lambrecht BN, Taghon T, Lippens S, Elewaut D, Saeys Y, Guilliams M (2019) Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51:638-654.e9. https://doi.org/10.1016/j.immuni.2019.08.017
doi: 10.1016/j.immuni.2019.08.017 pubmed: 31561945 pmcid: 6876284
Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, Brandis A, Giladi A, Avihail AS, David E, Amit I, Itzkovitz S (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356. https://doi.org/10.1038/nature21065
doi: 10.1038/nature21065 pubmed: 28166538 pmcid: 5321580
Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44:1182–1190. https://doi.org/10.1002/hep.21378
doi: 10.1002/hep.21378 pubmed: 17058232
Bertolino P, Trescol-Biémont MC, Rabourdin-Combe C (1998) Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28:221–236. https://doi.org/10.1002/(SICI)1521-4141(199801)28:01%3c221::AID-IMMU221%3e3.0.CO;2-F
doi: 10.1002/(SICI)1521-4141(199801)28:01<221::AID-IMMU221>3.0.CO;2-F pubmed: 9485202
Holz LE, Benseler V, Bowen DG, Bouillet P, Strasser A, O’Reilly L, d’Avigdor WM, Bishop AG, McCaughan GW, Bertolino P (2008) Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 135:989–997. https://doi.org/10.1053/j.gastro.2008.05.078
doi: 10.1053/j.gastro.2008.05.078 pubmed: 18619445
Bénéchet AP, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, Fumagalli V, Lusito E, Moalli F, Bianchessi V, Andreata F, Zordan P, Bono E, Giustini L, Bonilla WV, Bleriot C, Kunasegaran K, Gonzalez-Aseguinolaza G, Pinschewer DD, Kennedy PTF, Naldini L, Kuka M, Ginhoux F, Cantore A, Bertoletti A, Ostuni R, Guidotti LG, Iannacone M (2019) Dynamics and genomic landscape of CD8
doi: 10.1038/s41586-019-1620-6 pubmed: 31582858 pmcid: 6858885
Preti M, Schlott L, Lübbering D, Krzikalla D, Müller AL, Schuran FA, Poch T, Schakat M, Weidemann S, Lohse AW, Weiler-Normann C, Sebode M, Schwinge D, Schramm C, Carambia A, Herkel J (2021) Failure of thymic deletion and instability of autoreactive Tregs drive autoimmunity in immune-privileged liver. JCI Insight 6:e141462. https://doi.org/10.1172/jci.insight.141462
doi: 10.1172/jci.insight.141462 pmcid: 8026180
Herkel J, Jagemann B, Wiegard C, Lazaro JF, Lueth S, Kanzler S, Blessing M, Schmitt E, Lohse AW (2003) MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology 37:1079–1085. https://doi.org/10.1053/jhep.2003.50191
doi: 10.1053/jhep.2003.50191 pubmed: 12717388
Wiegard C, Wolint P, Frenzel C, Cheruti U, Schmitt E, Oxenius A, Lohse AW, Herkel J (2007) Defective T helper response of hepatocyte-stimulated CD4 T cells impairs antiviral CD8 response and viral clearance. Gastroenterology 133:2010–2018. https://doi.org/10.1053/j.gastro.2007.09.007
doi: 10.1053/j.gastro.2007.09.007 pubmed: 17967458
Grakoui A, Crispe IN (2016) Presentation of hepatocellular antigens. Cell Mol Immunol 13:293–300. https://doi.org/10.1038/cmi.2015.109
doi: 10.1038/cmi.2015.109 pubmed: 26924525 pmcid: 4856799
Schölzel K, Schildberg FA, Welz M, Börner C, Geiger S, Kurts C, Heikenwälder M, Knolle PA, Wohlleber D (2014) Transfer of MHC-class-I molecules among liver sinusoidal cells facilitates hepatic immune surveillance. J Hepatol 61:600–608. https://doi.org/10.1016/j.jhep.2014.04.028
doi: 10.1016/j.jhep.2014.04.028 pubmed: 24798625
Fasano R, Malerba E, Prete M, Solimando AG, Buonavoglia A, Silvestris N, Leone P, Racanelli V (2022) Impact of antigen presentation mechanisms on immune response in autoimmune hepatitis. Front Immunol 12:814155. https://doi.org/10.3389/fimmu.2021.814155
doi: 10.3389/fimmu.2021.814155 pubmed: 35116039 pmcid: 8804214
Breous E, Somanathan S, Vandenberghe LH, Wilson JM (2009) Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50:612–621. https://doi.org/10.1002/hep.23043
doi: 10.1002/hep.23043 pubmed: 19575456
You Q, Cheng L, Kedl RM, Ju C (2008) Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48:978–990. https://doi.org/10.1002/hep.22395
doi: 10.1002/hep.22395 pubmed: 18712788
Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P, Martin C, van Rooijen N, Ochando JC, Randolph GJ, Luedde T, Ginhoux F, Kurts C, Trautwein C, Tacke F (2015) Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62:279–291. https://doi.org/10.1002/hep.27793
doi: 10.1002/hep.27793 pubmed: 25810240
De Simone G, Andreata F, Bleriot C, Fumagalli V, Laura C, Garcia-Manteiga JM, Di Lucia P, Gilotto S, Ficht X, De Ponti FF, Bono EB, Giustini L, Ambrosi G, Mainetti M, Zordan P, Bénéchet AP, Ravà M, Chakarov S, Moalli F, Bajenoff M, Guidotti LG, Ginhoux F, Iannacone M (2021) Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54:2089-2100.e8. https://doi.org/10.1016/j.immuni.2021.05.005
doi: 10.1016/j.immuni.2021.05.005 pubmed: 34469774 pmcid: 8459394
Goddard S, Youster J, Morgan E, Adams DH (2004) Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol 164:511–519. https://doi.org/10.1016/S0002-9440(10)63141-0
doi: 10.1016/S0002-9440(10)63141-0 pubmed: 14742257 pmcid: 1602266
Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, Gonen M, Young JW, DeMatteo RP (2009) Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 182:1901–1911. https://doi.org/10.4049/jimmunol.0803404
doi: 10.4049/jimmunol.0803404 pubmed: 19201843
Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP (2007) Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 45:445–454. https://doi.org/10.1002/hep.21457
doi: 10.1002/hep.21457 pubmed: 17256750
Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann C, Ibe M, Schmitt E, Gerken G, Meyer Zum Büschenfelde KH (1996) Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110:1175–1181. https://doi.org/10.1053/gast.1996.v110.pm8613007
doi: 10.1053/gast.1996.v110.pm8613007 pubmed: 8613007
Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA (2008) Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47:296–305. https://doi.org/10.1002/hep.21965
doi: 10.1002/hep.21965 pubmed: 17975811
Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, Gerken G, Lohse AW (1999) Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116:1428–1440. https://doi.org/10.1016/s0016-5085(99)70508-1
doi: 10.1016/s0016-5085(99)70508-1 pubmed: 10348827
Carambia A, Frenzel C, Bruns OT, Schwinge D, Reimer R, Hohenberg H, Huber S, Tiegs G, Schramm C, Lohse AW, Herkel J (2013) Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J Hepatol 58:112–118. https://doi.org/10.1016/j.jhep.2012.09.008
doi: 10.1016/j.jhep.2012.09.008 pubmed: 22989568
Kruse N, Neumann K, Schrage A, Derkow K, Schott E, Erben U, Kühl A, Loddenkemper C, Zeitz M, Hamann A, Klugewitz K (2009) Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis. Hepatology 50:1904–1913. https://doi.org/10.1002/hep.23191
doi: 10.1002/hep.23191 pubmed: 19787806
Carambia A, Freund B, Schwinge D, Bruns OT, Salmen SC, Ittrich H, Reimer R, Heine M, Huber S, Waurisch C, Eychmüller A, Wraith DC, Korn T, Nielsen P, Weller H, Schramm C, Lüth S, Lohse AW, Heeren J, Herkel J (2015) Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J Hepatol 62:1349–1356. https://doi.org/10.1016/j.jhep.2015.01.006
doi: 10.1016/j.jhep.2015.01.006 pubmed: 25617499
Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354. https://doi.org/10.1038/82161 (PMID: 11100119)
doi: 10.1038/82161 pubmed: 11100119
Schurich A, Böttcher JP, Burgdorf S, Penzler P, Hegenbarth S, Kern M, Dolf A, Endl E, Schultze J, Wiertz E, Stabenow D, Kurts C, Knolle P (2009) Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 50:909–919. https://doi.org/10.1002/hep.23075 (PMID: 19610048)
doi: 10.1002/hep.23075 pubmed: 19610048
Böttcher JP, Schanz O, Garbers C, Zaremba A, Hegenbarth S, Kurts C, Beyer M, Schultze JL, Kastenmüller W, Rose-John S, Knolle PA (2014) IL-6 trans-signaling-dependent rapid development of cytotoxic CD8+ T cell function. Cell Rep 8:1318–1327. https://doi.org/10.1016/j.celrep.2014.07.008
doi: 10.1016/j.celrep.2014.07.008 pubmed: 25199826
Dudek M, Lohr K, Donakonda S, Baumann T, Lüdemann M, Hegenbarth S, Dübbel L, Eberhagen C, Michailidou S, Yassin A, Prinz M, Popper B, Rose-John S, Zischka H, Knolle PA (2022) IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells. Cell Rep 38:110389. https://doi.org/10.1016/j.celrep.2022.110389
doi: 10.1016/j.celrep.2022.110389 pubmed: 35172161
Carambia A, Gottwick C, Schwinge D, Stein S, Digigow R, Şeleci M, Mungalpara D, Heine M, Schuran FA, Corban C, Lohse AW, Schramm C, Heeren J, Herkel J (2021) Nanoparticle-mediated targeting of autoantigen peptide to cross-presenting liver sinusoidal endothelial cells protects from CD8 T-cell-driven autoimmune cholangitis. Immunology 162:452–463. https://doi.org/10.1111/imm.13298
doi: 10.1111/imm.13298 pubmed: 33346377 pmcid: 7968394
Connolly MK, Bedrosian AS, Malhotra A, Henning JR, Ibrahim J, Vera V, Cieza-Rubio NE, Hassan BU, Pachter HL, Cohen S, Frey AB, Miller G (2010) In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol 185:2200–2208. https://doi.org/10.4049/jimmunol.1000332
doi: 10.4049/jimmunol.1000332 pubmed: 20639479
Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355. https://doi.org/10.1038/nrg2988
doi: 10.1038/nrg2988 pubmed: 21499295
Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347. https://doi.org/10.1038/nm1358
doi: 10.1038/nm1358 pubmed: 16474400
Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378. https://doi.org/10.1038/s41573-019-0012-9
doi: 10.1038/s41573-019-0012-9 pubmed: 30710128 pmcid: 6927556
Verdera HC, Kuranda K, Mingozzi F (2020) AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther 28:723–746. https://doi.org/10.1016/j.ymthe.2019.12.010
doi: 10.1016/j.ymthe.2019.12.010 pubmed: 31972133 pmcid: 7054726
Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y, Arruda VR, High KA, Herzog RW (2003) Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 111:1347–1356. https://doi.org/10.1172/JCI16887
doi: 10.1172/JCI16887 pubmed: 12727926 pmcid: 154443
Ziegler RJ, Lonning SM, Armentano D, Li C, Souza DW, Cherry M, Ford C, Barbon CM, Desnick RJ, Gao G, Wilson JM, Peluso R, Godwin S, Carter BJ, Gregory RJ, Wadsworth SC, Cheng SH (2004) AAV2 vector harboring a liver-restricted promoter facilitates sustained expression of therapeutic levels of alpha-galactosidase A and the induction of immune tolerance in Fabry mice. Mol Ther 9:231–240. https://doi.org/10.1016/j.ymthe.2003.11.015
doi: 10.1016/j.ymthe.2003.11.015 pubmed: 14759807
Cao O, Dobrzynski E, Wang L, Nayak S, Mingle B, Terhorst C, Herzog RW (2007) Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 110:1132–1140. https://doi.org/10.1182/blood-2007-02-073304
doi: 10.1182/blood-2007-02-073304 pubmed: 17438084 pmcid: 1939896
Costa-Verdera H, Collaud F, Riling CR, Sellier P, Nordin JML, Preston GM, Cagin U, Fabregue J, Barral S, Moya-Nilges M, Krijnse-Locker J, van Wittenberghe L, Daniele N, Gjata B, Cosette J, Abad C, Simon-Sola M, Charles S, Li M, Crosariol M, Antrilli T, Quinn WJ 3rd, Gross DA, Boyer O, Anguela XM, Armour SM, Colella P, Ronzitti G, Mingozzi F (2021) Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun 12:6393. https://doi.org/10.1038/s41467-021-26744-4
doi: 10.1038/s41467-021-26744-4 pubmed: 34737297 pmcid: 8568898
Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39. https://doi.org/10.1016/j.jaut.2013.06.008
doi: 10.1016/j.jaut.2013.06.008 pubmed: 23849779 pmcid: 3963137
Akbarpour M, Goudy KS, Cantore A, Russo F, Sanvito F, Naldini L, Annoni A, Roncarolo MG (2015) Insulin B chain 9–23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3+ Tregs. Sci Transl Med 7:289ra81. https://doi.org/10.1126/scitranslmed.aaa3032
doi: 10.1126/scitranslmed.aaa3032 pubmed: 26019217
Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485. https://doi.org/10.1146/annurev.immunol.23.021704.115643
doi: 10.1146/annurev.immunol.23.021704.115643 pubmed: 15771578
Keeler GD, Kumar S, Palaschak B, Silverberg EL, Markusic DM, Jones NT, Hoffman BE (2017) Gene therapy-induced antigen-specific Tregs inhibit neuro-inflammation and reverse disease in a mouse model of multiple sclerosis. Mol Ther 26:173–183. https://doi.org/10.1016/j.ymthe.2017.09.001
doi: 10.1016/j.ymthe.2017.09.001 pubmed: 28943274 pmcid: 5762980
Kavanagh EW, Green JJ (2022) Toward gene transfer nanoparticles as therapeutics. Adv Healthc Mater 10:e2102145. https://doi.org/10.1002/adhm.202102145
doi: 10.1002/adhm.202102145
Föller M, Lang F (2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol 8:597. https://doi.org/10.3389/fcell.2020.00597
doi: 10.3389/fcell.2020.00597 pubmed: 32733893 pmcid: 7360839
Lemke G (2019) How macrophages deal with death. Nat Rev Immunol 19:539–549. https://doi.org/10.1038/s41577-019-0167-y
doi: 10.1038/s41577-019-0167-y pubmed: 31019284 pmcid: 6733267
Kontos S, Kourtis IC, Dane KY, Hubbell JA (2013) Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc Natl Acad Sci USA 110:E60–E68. https://doi.org/10.1073/pnas.1216353110
doi: 10.1073/pnas.1216353110 pubmed: 23248266
Grimm AJ, Kontos S, Diaceri G, Quaglia-Thermes X, Hubbell JA (2015) Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci Rep 5:15907. https://doi.org/10.1038/srep15907
doi: 10.1038/srep15907 pubmed: 26511151 pmcid: 4625129
Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T (2003) PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 198:39–50. https://doi.org/10.1084/jem.20022235
doi: 10.1084/jem.20022235 pubmed: 12847136 pmcid: 2196084
Lorentz KM, Kontos S, Diaceri G, Henry H, Hubbell JA (2015) Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci Adv 1:e1500112. https://doi.org/10.1126/sciadv.1500112
doi: 10.1126/sciadv.1500112 pubmed: 26601215 pmcid: 4646778
Pratt KP (2018) Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies (Basel) 7:19. https://doi.org/10.3390/antib7020019
doi: 10.3390/antib7020019
Montaño J, Garnica J, Santamaria P (2021) Immunomodulatory and immunoregulatory nanomedicines for autoimmunity. Semin Immunol 56:101535. https://doi.org/10.1016/j.smim.2021.101535
doi: 10.1016/j.smim.2021.101535 pubmed: 34969600
Siafaka PI, Üstündağ Okur N, Karavas E (2016) Bikiaris DN (2016) Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci 17:1440. https://doi.org/10.3390/ijms17091440
doi: 10.3390/ijms17091440 pmcid: 5037719
Doll TA, Raman S, Dey R, Burkhard P (2013) Nanoscale assemblies and their biomedical applications. J R Soc Interface 10:20120740. https://doi.org/10.1098/rsif.2012.0740
doi: 10.1098/rsif.2012.0740 pubmed: 23303217 pmcid: 3565727
Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJ, Shea LD, Miller SD (2012) Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30:1217–1224. https://doi.org/10.1038/nbt.2434
doi: 10.1038/nbt.2434 pubmed: 23159881 pmcid: 3589822
Prasad S, Neef T, Xu D, Podojil JR, Getts DR, Shea LD, Miller SD (2018) Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J Autoimmun 89:112–124. https://doi.org/10.1016/j.jaut.2017.12.010
doi: 10.1016/j.jaut.2017.12.010 pubmed: 29258717
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643
doi: 10.1172/JCI59643 pubmed: 22378047 pmcid: 3287223
Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH (2021) Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol 16:37–46. https://doi.org/10.1038/s41565-020-00810-2
doi: 10.1038/s41565-020-00810-2 pubmed: 33349685
Ergen C, Heymann F, Al Rawashdeh W, Gremse F, Bartneck M, Panzer U, Pola R, Pechar M, Storm G, Mohr N, Barz M, Zentel R, Kiessling F, Trautwein C, Lammers T, Tacke F (2017) Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 114:106–120. https://doi.org/10.1016/j.biomaterials.2016.11.009
doi: 10.1016/j.biomaterials.2016.11.009 pubmed: 27855336
Liu Q, Wang X, Liu X, Liao YP, Chang CH, Mei KC, Jiang J, Tseng S, Gochman G, Huang M, Thatcher Z, Li J, Allen SD, Lucido L, Xia T, Nel AE (2021) Antigen- and epitope-delivering nanoparticles targeting liver induce comparable immunotolerance in allergic airway disease and anaphylaxis as nanoparticle-delivering pharmaceuticals. ACS Nano 15:1608–1626. https://doi.org/10.1021/acsnano.0c09206
doi: 10.1021/acsnano.0c09206 pubmed: 33351586

Auteurs

Cornelia Gottwick (C)

First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany. c.gottwick@uke.de.

Antonella Carambia (A)

First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany. a.carambia@uke.de.

Johannes Herkel (J)

First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany. jherkel@uke.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH