Psoriatic arthritis from a mechanistic perspective.
Journal
Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
accepted:
29
03
2022
pubmed:
6
5
2022
medline:
31
5
2022
entrez:
5
5
2022
Statut:
ppublish
Résumé
Psoriatic arthritis (PsA) is part of a group of closely related clinical phenotypes ('psoriatic disease') that is defined by shared molecular pathogenesis resulting in excessive, prolonged inflammation in the various tissues affected, such as the skin, the entheses or the joints. Psoriatic disease comprises a set of specific drivers that promote an aberrant immune response and the consequent development of chronic disease that necessitates therapeutic intervention. These drivers include genetic, biomechanical, metabolic and microbial factors that facilitate a robust and continuous mobilization, trafficking and homing of immune cells into the target tissues. The role of genetic variants involved in the immune response, the contribution of mechanical factors triggering an exaggerated inflammatory response (mechanoinflammation), the impact of adipose tissue and altered lipid metabolism and the influence of intestinal dysbiosis in the disease process are discussed. Furthermore, the role of key cytokines, such as IL-23, IL-17 and TNF, in orchestrating the various phases of the inflammatory disease process and as therapeutic targets in PsA is reviewed. Finally, the nature and the mechanisms of inflammatory tissue responses inherent to PsA are summarized.
Identifiants
pubmed: 35513599
doi: 10.1038/s41584-022-00776-6
pii: 10.1038/s41584-022-00776-6
doi:
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
311-325Informations de copyright
© 2022. Springer Nature Limited.
Références
Lubrano, E., Scriffignano, S. & Perrotta, F. M. Psoriatic arthritis, psoriatic disease, or psoriatic syndrome? J. Rheumatol. 46, 1428–1430 (2019).
pubmed: 31676545
doi: 10.3899/jrheum.190054
Scarpa, R. Psoriatic syndrome or psoriatic disease? J. Rheumatol. 47, 941 (2020).
pubmed: 32358159
doi: 10.3899/jrheum.200051
Leung, Y. Y. et al. The GRAPPA-OMERACT Working Group: 4 prioritized domains for completing the core outcome measurement set for psoriatic arthritis 2019 Updates. J. Rheumatol. Suppl. 96, 46–49 (2020).
pubmed: 32482768
doi: 10.3899/jrheum.200127
Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).
pubmed: 16871531
doi: 10.1002/art.21972
Moll, J. M. & Wright, V. Familial occurrence of psoriatic arthritis. Ann. Rheum. Dis. 32, 181–201 (1973).
pubmed: 4715537
pmcid: 1006078
doi: 10.1136/ard.32.3.181
Solmaz, D. et al. Impact of having family history of psoriasis or psoriatic arthritis on psoriatic disease. Arthritis Care Res. 72, 63–68 (2020).
doi: 10.1002/acr.23836
Lonnberg, A. S. et al. Genetic factors explain variation in the age at onset of psoriasis: a population-based twin study. Acta Derm. Venereol. 96, 35–38 (2016).
pubmed: 26073043
doi: 10.2340/00015555-2171
Swanbeck, G., Inerot, A., Martinsson, T. & Wahlström, J. A population genetic study of psoriasis. Acta Derm. Venereol. Suppl. 186, 7–8 (1994).
Myers, A., Kay, L. J., Lynch, S. A. & Walker, D. J. Recurrence risk for psoriasis and psoriatic arthritis within sibships. Rheumatology 44, 773–776 (2005).
pubmed: 15757963
doi: 10.1093/rheumatology/keh589
Pedersen, O. B., Svendsen, A. J., Ejstrup, L., Skytthe, A. & Junker, P. On the heritability of psoriatic arthritis. Disease concordance among monozygotic and dizygotic twins. Ann. Rheum. Dis. 67, 1417–1421 (2008).
pubmed: 18218666
doi: 10.1136/ard.2007.078428
Chandran, V. et al. Familial aggregation of psoriatic arthritis. Ann. Rheum. Dis. 68, 664–667 (2009).
pubmed: 18524791
doi: 10.1136/ard.2008.089367
Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).
pubmed: 28854176
doi: 10.1038/ng.3941
Li, Q. et al. Quantifying differences in heritability among psoriatic arthritis (PsA), cutaneous psoriasis (PsC) and psoriasis vulgaris (PsV). Sci. Rep. 10, 4925 (2020).
pubmed: 32188927
pmcid: 7080781
doi: 10.1038/s41598-020-61981-5
Husted, J. A. et al. Cardiovascular and other comorbidities in patients with psoriatic arthritis: a comparison with patients with psoriasis. Arthritis Care Res. 63, 1729–1735 (2011).
doi: 10.1002/acr.20627
Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).
pubmed: 16642438
pmcid: 1474031
doi: 10.1086/503821
Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).
pubmed: 22006066
doi: 10.1002/art.33415
Eder, L. et al. Differential human leucocyte allele association between psoriasis and psoriatic arthritis: a family-based association study. Ann. Rheum. Dis. 71, 1361–1365 (2012).
pubmed: 22586163
doi: 10.1136/annrheumdis-2012-201308
Winchester R., & Rahman P. in Oxford Textbook of Psoriatic Arthritis (ed Gladman D. & FitzGerald O.) 57–67 (Oxford University Press, 2019).
Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).
pubmed: 25261574
doi: 10.1136/annrheumdis-2014-205461
FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).
pubmed: 25948071
pmcid: 4422545
doi: 10.1186/s13075-015-0640-3
Gladman, D. D., Farewell, V. T. & Nadeau, C. Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. J. Rheumatol. 22, 675–679 (1995).
pubmed: 7791162
Chandran, V. et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum. Immunol. 74, 1333–1338 (2013).
pubmed: 23916976
doi: 10.1016/j.humimm.2013.07.014
Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).
pubmed: 25087609
pmcid: 4129407
doi: 10.1016/j.ajhg.2014.07.002
Bowes, J. et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann. Rheum. Dis. 74, 1882–1885 (2015).
pubmed: 25923216
doi: 10.1136/annrheumdis-2014-207187
Pencava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).
doi: 10.1038/s41467-020-18513-6
Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).
pubmed: 31677365
pmcid: 7065207
doi: 10.1002/art.41156
Tomfohrde, J. et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 264, 1141–1145 (1994).
pubmed: 8178173
doi: 10.1126/science.8178173
Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).
pubmed: 22521418
pmcid: 3376640
doi: 10.1016/j.ajhg.2012.03.012
Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).
pubmed: 21848462
doi: 10.1056/NEJMoa1013068
Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).
pubmed: 21839423
pmcid: 3169817
doi: 10.1016/j.ajhg.2011.07.022
Stuart, P. E. et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 97, 816–836 (2015).
pubmed: 26626624
pmcid: 4678416
doi: 10.1016/j.ajhg.2015.10.019
Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 6046 (2015).
pubmed: 25651891
doi: 10.1038/ncomms7046
Ellinghaus, E. et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42, 991–995 (2010).
pubmed: 20953188
pmcid: 3136364
doi: 10.1038/ng.689
Rahmati, S., Tsoi, L., O’Rielly, D. D., Chandran, V. & Rahman, P. Complexities in genetics of psoriatic arthritis. Curr. Rheumatol. Rep. 22, 10 (2020).
pubmed: 32166449
pmcid: 7067725
doi: 10.1007/s11926-020-0886-x
Patrick, M. T. et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat. Commun. 9, 4178 (2018).
pubmed: 30301895
pmcid: 6177414
doi: 10.1038/s41467-018-06672-6
Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).
pubmed: 33462485
pmcid: 8515199
doi: 10.1038/s41588-020-00763-1
Asquith, M. et al. Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 69, 1984–1995 (2017).
pubmed: 28622455
pmcid: 5623151
doi: 10.1002/art.40183
Gill, T. et al. Novel inter-omic analysis reveals relationships between diverse gut microbiota and host immune dysregulation in HLA-B27-induced experimental spondyloarthritis. Arthritis Rheumatol. 71, 1849–1857 (2019).
pubmed: 31216122
pmcid: 7603391
doi: 10.1002/art.41018
Yin, J. et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 79, 132–140 (2020).
pubmed: 31662318
doi: 10.1136/annrheumdis-2019-215763
Manasson, J. et al. Gut microbiota perturbations in reactive arthritis and postinfectious spondyloarthritis. Arthritis Rheumatol. 70, 242–254 (2018).
pubmed: 29073348
pmcid: 5788722
doi: 10.1002/art.40359
Kishikawa, T. et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann. Rheum. Dis. 79, 103–111 (2020).
pubmed: 31699813
doi: 10.1136/annrheumdis-2019-215743
Scher, J. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).
pubmed: 24192039
pmcid: 3816614
doi: 10.7554/eLife.01202
Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145 (2018).
pubmed: 29311119
pmcid: 6889978
doi: 10.1136/bmj.j5145
Kim, D. et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5, 52 (2017).
pubmed: 28476139
pmcid: 5420141
doi: 10.1186/s40168-017-0267-5
Scher, J. U., Littman, D. R. & Abramson, S. B. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol. 68, 35–45 (2016).
pubmed: 26331579
pmcid: 4789258
doi: 10.1002/art.39259
Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat. Rev. Rheumatol. 12, 446–455 (2016).
pubmed: 27256713
doi: 10.1038/nrrheum.2016.68
Aguiar-Pulido, V. et al. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol. Bioinform. Online 12, 5–16 (2016).
pubmed: 27199545
pmcid: 4869604
Siggins, A., Gunnigle, E. & Abram, F. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol. Ecol. 80, 265–280 (2012).
pubmed: 22225547
doi: 10.1111/j.1574-6941.2011.01284.x
Lin, P. et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9, e105684 (2014).
pubmed: 25140823
pmcid: 4139385
doi: 10.1371/journal.pone.0105684
Asquith, M. J. et al. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 68, 2151–2162 (2016).
pubmed: 26992013
pmcid: 5542398
doi: 10.1002/art.39681
Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).
pubmed: 7964509
doi: 10.1084/jem.180.6.2359
Yoshitomi, H. et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–9608 (2005).
pubmed: 15781585
pmcid: 2213107
doi: 10.1084/jem.20041758
Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).
pubmed: 25319745
pmcid: 4280348
doi: 10.1002/art.38892
Codoñer, F. M. et al. Gut microbial composition in patients with psoriasis. Sci. Rep. 8, 3812 (2018).
pubmed: 29491401
pmcid: 5830498
doi: 10.1038/s41598-018-22125-y
Shapiro, J. et al. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J. Dermatol. 46, 595–603 (2019).
pubmed: 31141234
doi: 10.1111/1346-8138.14933
Chen, Y. J. et al. Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Exp. Dermatol. 27, 1336–1343 (2018).
pubmed: 30238519
doi: 10.1111/exd.13786
Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).
pubmed: 19333939
doi: 10.1002/art.24389
Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).
pubmed: 22144400
doi: 10.1002/art.33507
Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).
pubmed: 27165176
doi: 10.1136/annrheumdis-2015-208902
Soare, A. et al. Homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J. Immunol. 200, 1249–1254 (2018).
pubmed: 29330320
doi: 10.4049/jimmunol.1700596
Zanvit, P. et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6, 8424 (2015).
pubmed: 26416167
doi: 10.1038/ncomms9424
Stehlikova, Z. et al. Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model front microbiol. Front Microbiol. 10, 236 (2019).
pubmed: 30846974
pmcid: 6394148
doi: 10.3389/fmicb.2019.00236
Chang, H. W. et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 6, 154 (2018).
pubmed: 30185226
pmcid: 6125946
doi: 10.1186/s40168-018-0533-1
Langan, E. A. et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. Br. J. Dermatol. 181, 1254–1264 (2019).
pubmed: 30985920
doi: 10.1111/bjd.17989
Loesche, M. A. et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with ustekinumab in a randomized phase 3b clinical trial. J. Invest. Dermatol. 138, 1973–1981 (2018).
pubmed: 29559344
doi: 10.1016/j.jid.2018.03.1501
Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).
pubmed: 19478181
pmcid: 2805064
doi: 10.1126/science.1171700
Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248 (2021).
pubmed: 34214492
doi: 10.1016/j.chom.2021.05.011
Meisel, J. S. et al. Commensal microbiota modulate gene expression in the skin. Microbiome 6, 20 (2018).
pubmed: 29378633
pmcid: 5789709
doi: 10.1186/s40168-018-0404-9
Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).
pubmed: 22837383
pmcid: 3513834
doi: 10.1126/science.1225152
Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl Acad. Sci. USA 112, E2120–E2129 (2015).
pubmed: 25825778
pmcid: 4418856
doi: 10.1073/pnas.1424409112
Fyhrquist, N. et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 10, 4703 (2019).
pubmed: 31619666
pmcid: 6795799
doi: 10.1038/s41467-019-12253-y
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).
pubmed: 24226770
doi: 10.1038/nature12721
Chen, L. et al. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).
pubmed: 30918945
pmcid: 6701512
doi: 10.1093/ibd/izz046
Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837–851 (2020).
pubmed: 32213346
pmcid: 7156916
doi: 10.1016/j.cmet.2020.03.003
Kim, D. S. et al. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front. Immunol. 9, 1525 (2018).
pubmed: 30034392
pmcid: 6043689
doi: 10.3389/fimmu.2018.01525
Lucas, S. et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 9, 1–10 (2018).
doi: 10.1038/s41467-017-02490-4
Dürholz, K. et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients 12, 3207 (2020).
pmcid: 7589100
doi: 10.3390/nu12103207
Fardina Malik, J. M. et al. in American College of Rheumatology 2018 ACR/ARHP Annual Meeting Abstract Number 2058 (Wiley, 2018).
Dupire, G., Droitcourt, C., Hughes, C. & Le Cleach, L. Antistreptococcal interventions for guttate and chronic plaque psoriasis. Cochrane Database Syst. Rev. 3, CD011571 (2019).
pubmed: 30835819
Vijayashankar, M. & Raghunath, N. Pustular psoriasis responding to probiotics — a new insight. Our Dermatol. Online 3, 326 (2012).
doi: 10.7241/ourd.20124.71
Alesa, D. I. et al. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J. Fam. Med. Prim. Care 8, 3496–3503 (2019).
doi: 10.4103/jfmpc.jfmpc_709_19
Grinnell, M., Ogdie, A., Wipfler, K. & Michaud, K. Probiotic use and psoriatic arthritis disease activity. ACR Open. Rheumatol. 2, 330–334 (2020).
pubmed: 32386116
pmcid: 7301869
doi: 10.1002/acr2.11143
Saxena, V. N. & Dogra, J. Long-term use of penicillin for the treatment of chronic plaque psoriasis. Eur. J. Dermatol. 15, 359–362 (2005).
pubmed: 16172045
Kragsnaes, M. S. et al. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 8, e019231 (2018).
pubmed: 29703851
pmcid: 5922473
doi: 10.1136/bmjopen-2017-019231
Kragsnaes, M. S. et al. Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann. Rheum. Dis. 80, 1158–1167 (2021).
pubmed: 33926922
doi: 10.1136/annrheumdis-2020-219511
McGonagle, D. G., Bridgewood, C. & Marzo-Ortega, H. Correspondence on ‘Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-220910 (2021).
doi: 10.1136/annrheumdis-2021-220910
pubmed: 34893470
Scher, J. U., Nayak, R. R., Ubeda, C., Turnbaugh, P. J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16, 282–292 (2020).
pubmed: 32157196
doi: 10.1038/s41584-020-0395-3
Rizkallah, M. R., Saad, R. & Aziz, R. K. The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr. Pharmacogenomics Person. Med. 8, 182–193 (2010).
doi: 10.2174/187569210792246326
Peppercorn, M. A. & Goldman, P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J. Pharmacol. Exp. Ther. 181, 555–562 (1972).
pubmed: 4402374
Zaharko, D. S., Bruckner, H. & Oliverio, V. T. Antibiotics alter methotrexate metabolism and excretion. Science 166, 887–888 (1969).
pubmed: 5345205
doi: 10.1126/science.166.3907.887
Valerino, D. M., Johns, D. G., Zaharko, D. S. & Oliverio, V. T. Studies of the metabolism of methotrexate by intestinal flora. I. Identification and study of biological properties of the metabolite 4-amino-4-deoxy-N 10-methylpteroic acid. Biochem. Pharmacol. 21, 821–831 (1972).
pubmed: 5014749
doi: 10.1016/0006-2952(72)90125-6
Artacho, A. et al. The pre-treatment gut microbiome is associated with lack of response to methotrexate in new onset rheumatoid arthritis. Arthritis Rheumatol. 73, 931–942 (2021).
pubmed: 33314800
doi: 10.1002/art.41622
Nayak, R. R. et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 29, 362–377 (2021).
pubmed: 33440172
pmcid: 7954989
doi: 10.1016/j.chom.2020.12.008
Bazin, T. et al. Microbiota composition may predict anti-TNF alpha response in spondyloarthritis patients: an exploratory study. Sci. Rep. 8, 5446 (2018).
pubmed: 29615661
pmcid: 5882885
doi: 10.1038/s41598-018-23571-4
Manasson, J. et al. IL-17 inhibition in spondyloarthritis associates with subclinical gut microbiome perturbations and a distinctive IL-25-driven intestinal inflammation. Arthritis Rheumatol. 72, 645–657 (2020).
pubmed: 31729183
pmcid: 7113119
doi: 10.1002/art.41169
Yeh, N. L., Hsu, C. Y., Tsai, T. F. & Chiu, H. Y. Gut microbiome in psoriasis is perturbed differently during secukinumab and ustekinumab therapy and associated with response to treatment. Clin. Drug Investig. 39, 1195–1203 (2019).
pubmed: 31549347
doi: 10.1007/s40261-019-00849-7
Hegde, P. et al. Mucosal-associated invariant T cells area profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).
pubmed: 29858567
pmcid: 5984626
doi: 10.1038/s41467-018-04450-y
Setty, A. R., Curhan, G. & Choi, H. K. Obesity, waist circumference, weight change, and the risk of psoriasis in women: nurses’ health study II. Arch. Intern. Med. 167, 1670–1675 (2007).
pubmed: 17698691
doi: 10.1001/archinte.167.15.1670
Snekvik, I., Nilsen, T. I. L., Romundstad, P. R. & Saunes, M. Metabolic syndrome and risk of incident psoriasis: prospective data from the HUNT Study, Norway. Br. J. Dermatol. 180, 94–99 (2019).
pubmed: 29904911
doi: 10.1111/bjd.16885
Budu-Aggrey, A. et al. Evidence of a causal relationship between body mass index and psoriasis: a Mendelian randomization study. PLoS Med. 16, e1002739 (2019).
pubmed: 30703100
pmcid: 6354959
doi: 10.1371/journal.pmed.1002739
Icen, M. et al. Trends in incidence of adult-onset psoriasis over three decades: a population-based study. J. Am. Acad. Dermatol. 60, 394–401 (2009).
pubmed: 19231638
pmcid: 3028518
doi: 10.1016/j.jaad.2008.10.062
Alotaibi, H. A. Effects of weight loss on psoriasis: a review of clinical trials. Cureus 10, e3491 (2018).
pubmed: 30648033
pmcid: 6318144
Klingberg, E. et al. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: an interventional study. Arthritis Res. Ther. 21, 17 (2019).
pubmed: 30635024
pmcid: 6330463
doi: 10.1186/s13075-019-1810-5
Egeberg, A. et al. Incidence and prognosis of psoriasis and psoriatic arthritis in patients undergoing bariatric surgery. JAMA Surg. 152, 344–349 (2017).
pubmed: 28002543
doi: 10.1001/jamasurg.2016.4610
Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).
pubmed: 24439368
pmcid: 3934003
doi: 10.1016/j.cell.2013.12.012
Zhu, K. J. et al. Leptin levels in patients with psoriasis: a meta-analysis. Clin. Exp. Dermatol. 38, 478–483 (2013).
pubmed: 23777488
doi: 10.1111/ced.12171
Eder, L. et al. Serum adipokines in patients with psoriatic arthritis and psoriasis alone and their correlation with disease activity. Ann. Rheum. Dis. 72, 1956–1961 (2013).
pubmed: 23243196
doi: 10.1136/annrheumdis-2012-202325
Cheleschi, S., Tenti, S., Bedogni, G. & Fioravanti, A. Circulating Mir-140 and leptin improve the accuracy of the differential diagnosis between psoriatic arthritis and rheumatoid arthritis: a case-control study. Transl. Res. 239, 18–31 (2022).
pubmed: 34380068
doi: 10.1016/j.trsl.2021.08.001
Caso, F. et al. Pro-inflammatory adipokine profile in psoriatic arthritis: results from a cross- sectional study comparing PsA subset with evident cutaneous involvement and subset “sine psoriasis”. Clin. Rheumatol. 38, 2547–2552 (2019).
pubmed: 31147798
doi: 10.1007/s10067-019-04619-w
Toussirot, E. et al. Visceral adiposity in patients with psoriatic arthritis and psoriasis alone and its relationship with metabolic and cardiovascular risk. Rheumatology 60, 2816–2825 (2021).
pubmed: 33232483
doi: 10.1093/rheumatology/keaa720
Ferguson, L. D., Siebert, S., McInnes, I. B. & Sattar, N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat. Rev. Rheumatol. 15, 461–474 (2019).
pubmed: 31292564
doi: 10.1038/s41584-019-0256-0
Herbert, D. et al. High-fat diet exacerbates early psoriatic skin inflammation independent of obesity: saturated fatty acids as key players. J. Invest. Dermatol. 138, 1999–2009 (2018).
pubmed: 29605673
doi: 10.1016/j.jid.2018.03.1522
Nakamizo, S. et al. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci. Rep. 7, 14076 (2017).
pubmed: 29074858
pmcid: 5658347
doi: 10.1038/s41598-017-14292-1
Zhang, Y. et al. Epidermal fatty acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 42, 953–964 (2015).
pubmed: 25992864
pmcid: 4440244
doi: 10.1016/j.immuni.2015.04.016
Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).
pubmed: 29328911
pmcid: 6324559
doi: 10.1016/j.cell.2017.12.013
Håversen, L., Danielsson, K. N., Fogelstrand, L. & Wiklund, O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202, 382–393 (2009).
pubmed: 18599066
doi: 10.1016/j.atherosclerosis.2008.05.033
Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).
pubmed: 21478880
pmcid: 4090391
doi: 10.1038/ni.2022
Kunz, M., Simon, J. C. & Saalbach, A. Psoriasis: obesity and fatty acids. Front. Immunol. 10, 1807 (2019).
pubmed: 31417571
pmcid: 6684944
doi: 10.3389/fimmu.2019.01807
Olejniczak-Staruch, I. et al. AntiTNF-alpha therapy normalizes levels of lipids and adipokines in psoriatic patients in the real-life settings. Sci. Rep. 11, 9289 (2021).
pubmed: 33927259
pmcid: 8085202
doi: 10.1038/s41598-021-88552-6
Prasad, M. et al. Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 12, 168 (2015).
pubmed: 25533796
doi: 10.1038/nrcardio.2014.206
Mehta, N. N. et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study. Arch. Dermatol. 147, 1031–1039 (2011).
pubmed: 21576552
pmcid: 3158301
doi: 10.1001/archdermatol.2011.119
McKellar, G. E., McCarey, D. W., Sattar, N. & McInnes, I. B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 6, 410–417 (2009).
pubmed: 19421244
doi: 10.1038/nrcardio.2009.57
Robert, M. & Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev. 16, 984–991 (2017).
pubmed: 28705781
doi: 10.1016/j.autrev.2017.07.009
Aksentijevich, M., Lateef, S. S., Anzenberg, P., Dey, A. K. & Mehta, N. N. Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc. Med. 30, 472–478 (2020).
pubmed: 31837960
doi: 10.1016/j.tcm.2019.11.001
Ogdie, A. et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann. Rheum. Dis. 74, 326–332 (2015).
pubmed: 25351522
doi: 10.1136/annrheumdis-2014-205675
Lam, S. H. M. et al. DAPSA, carotid plaque and cardiovascular events in psoriatic arthritis: a longitudinal study. Ann. Rheum. Dis. 79, 1320–1326 (2020).
pubmed: 32737113
doi: 10.1136/annrheumdis-2020-217595
Egeberg, A. et al. The relationship between duration of psoriasis, vascular inflammation, and cardiovascular events. J. Am. Acad. Dermatol. 77, 650–656.e3 (2017).
pubmed: 28826925
pmcid: 5657544
doi: 10.1016/j.jaad.2017.06.028
Polachek, A. et al. Risk of cardiovascular morbidity in patients with psoriatic arthritis: a meta-analysis of observational studies. Arthritis Care Res. 69, 67–74 (2017).
doi: 10.1002/acr.22926
Jamnitski, A. et al. Cardiovascular comorbidities in patients with psoriatic arthritis: a systematic review. Ann. Rheum. Dis. 72, 211–216 (2013).
pubmed: 22532629
doi: 10.1136/annrheumdis-2011-201194
Radner, H. et al. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res. 69, 1510–1518 (2017).
doi: 10.1002/acr.23171
Charlton, R. et al. Risk of type 2 diabetes and cardiovascular disease in an incident cohort of people with psoriatic arthritis: a population-based cohort study. Rheumatology 58, 144–148 (2019).
pubmed: 30202906
doi: 10.1093/rheumatology/key286
Kolliker Frers, R. A. et al. Immune-mediated inflammation promotes subclinical atherosclerosis in recent-onset psoriatic arthritis patients without conventional cardiovascular risk factors. Front. Immunol. 9, 139 (2018).
pubmed: 29535705
pmcid: 5834432
doi: 10.3389/fimmu.2018.00139
Szentpetery, A. et al. Higher coronary plaque burden in psoriatic arthritis is independent of metabolic syndrome and associated with underlying disease severity. Arthritis Rheumatol. 70, 396–407 (2018).
pubmed: 29193860
doi: 10.1002/art.40389
Lerman, J. B. et al. Coronary plaque characterization in psoriasis reveals high-risk features that improve after treatment in a prospective observational study. Circulation 136, 263–276 (2017).
pubmed: 28483812
pmcid: 5534138
doi: 10.1161/CIRCULATIONAHA.116.026859
Wu, J. J. et al. Anti-inflammatory therapy with tumour necrosis factor inhibitors is associated with reduced risk of major adverse cardiovascular events in psoriasis. J. Eur. Acad. Dermatol. Venereol. 32, 1320–1326 (2018).
pubmed: 29573294
doi: 10.1111/jdv.14951
Eder, L. et al. Association of tumor necrosis factor inhibitor treatment with reduced indices of subclinical atherosclerosis in patients with psoriatic disease. Arthritis Rheumatol. 70, 408–416 (2018).
pubmed: 29088580
doi: 10.1002/art.40366
Elnabawi, Y. A. et al. Coronary artery plaque characteristics and treatment with biologic therapy in severe psoriasis: results from a prospective observational study. Cardiovasc. Res. 115, 721–728 (2019).
pubmed: 30721933
pmcid: 6432047
doi: 10.1093/cvr/cvz009
Koebner, H. Zur aetilologie der psoriasis. Vjschr Dermatol. 3, 559 (1876).
Furue, K. et al. Pathogenic implication of epidermal scratch injury in psoriasis and atopic dermatitis. J. Dermatol. 47, 979–988 (2020).
pubmed: 32677165
doi: 10.1111/1346-8138.15507
Miller, R. A. The Koebner phenomenon. Int. J. Dermatol. 21, 192–197 (1982).
pubmed: 7047416
doi: 10.1111/j.1365-4362.1982.tb02070.x
Kirschbaum, J. O. Koebner phenomenon following acupuncture. Arch. Dermatol. 106, 767 (1972).
pubmed: 4635811
doi: 10.1001/archderm.1972.01620140101033
Grodner, C. et al. Tattoo complications in treated and non-treated psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 34, 888–896 (2020).
pubmed: 31568596
doi: 10.1111/jdv.15975
Belman, S. et al. Psoriasis characteristics for the early detection of psoriatic arthritis. J. Rheumatol. 48, 1559–1565 (2021).
pubmed: 33858978
doi: 10.3899/jrheum.201123
Wolf, R. et al. Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci. Transl. Med. 2, 61ra90 (2010).
pubmed: 21148126
pmcid: 6334290
doi: 10.1126/scitranslmed.3001108
Raychaudhuri, S. P. et al. Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. Am. J. Pathol. 172, 961–971 (2008).
pubmed: 18349121
pmcid: 2276420
doi: 10.2353/ajpath.2008.070710
Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).
pubmed: 23064362
pmcid: 3484446
doi: 10.1172/JCI63451
Zhang, L. J. et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45, 119–130 (2016).
pubmed: 27438769
pmcid: 4957248
doi: 10.1016/j.immuni.2016.06.021
Eder, L. et al. The incidence and risk factors for psoriatic arthritis in patients with psoriasis: a prospective cohort study. Arthritis Rheumatol. 68, 915–923 (2016).
pubmed: 26555117
doi: 10.1002/art.39494
Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).
pubmed: 27457510
doi: 10.1136/annrheumdis-2016-209334
Ritchlin, C. T., Colbert, R. A. & Gladmann, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).
pubmed: 28273019
doi: 10.1056/NEJMra1505557
Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).
pubmed: 27263531
pmcid: 4893609
doi: 10.1038/srep27149
Gracey, E. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).
pubmed: 32080619
pmcid: 7815340
doi: 10.1038/s41584-019-0364-x
Otabe, K. et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J. Orthop. Res. 33, 1–8 (2015).
pubmed: 25312837
doi: 10.1002/jor.22750
Yoshimoto, Y. et al. Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci. Rep. 7, 45010 (2017).
pubmed: 28327634
pmcid: 5361204
doi: 10.1038/srep45010
Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).
pubmed: 30397205
pmcid: 6218475
doi: 10.1038/s41467-018-06933-4
Cambré, I. et al. Running promotes chronicity of arthritis by local modulation of complement activators and impairing T regulatory feedback loops. Ann. Rheum. Dis. 78, 787–795 (2019).
pubmed: 30928902
doi: 10.1136/annrheumdis-2018-214627
Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).
pubmed: 23921997
doi: 10.1136/annrheumdis-2013-203643
Malmberg, A. B. & Yaksh, T. L. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257, 1276–1279 (1992).
pubmed: 1381521
doi: 10.1126/science.1381521
Slacedo, R. et al. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood 102, 1966–1977 (2003).
doi: 10.1182/blood-2002-11-3400
Chizzolini, C. et al. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 112, 3696–3703 (2008).
pubmed: 18698005
pmcid: 2572797
doi: 10.1182/blood-2008-05-155408
Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).
pubmed: 34379924
doi: 10.1056/NEJMra1909094
Deodhar, A. et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1115–1125 (2020).
pubmed: 32178765
doi: 10.1016/S0140-6736(20)30265-8
McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).
pubmed: 23769296
doi: 10.1016/S0140-6736(13)60594-2
Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt
pubmed: 22772566
doi: 10.1038/nm.2817
Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheum. Dis. 80, 591–597 (2021).
pubmed: 33243781
doi: 10.1136/annrheumdis-2020-218186
Wade, S. M. et al. Association of synovial tissue polyfunctional T-cells with DAPSA in psoriatic arthritis. Ann. Rheum. Dis. 78, 350–354 (2019).
pubmed: 30626658
doi: 10.1136/annrheumdis-2018-214138
Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).
pubmed: 27111864
doi: 10.1002/art.39732
Watad, A. et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann. Rheum. Dis. 79, 1044–1054 (2020).
pubmed: 32404344
doi: 10.1136/annrheumdis-2020-217309
Cuthbert, R. J. et al. Group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).
pubmed: 28511289
doi: 10.1002/art.40150
Raychaudhuri, S. K., Abria, C., Mitra, A. & Raychaudhuri, S. P. Functional significance of MAIT cells in psoriatic arthritis. Cytokine 125, 154855 (2020).
pubmed: 31541902
doi: 10.1016/j.cyto.2019.154855
Araujo, E. G. et al. Effects of ustekinumab versus tumor necrosis factor inhibition on enthesitis: results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Semin. Arthritis Rheum. 48, 632–637 (2019).
pubmed: 30037432
doi: 10.1016/j.semarthrit.2018.05.011
Savage, L. et al. Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis: a fifty-two-week, prospective, open-label feasibility study. Arthritis Rheumatol. 71, 626–631 (2019).
pubmed: 30468001
doi: 10.1002/art.40778
Baeten, D. et al. Risankizuma, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).
pubmed: 29945918
doi: 10.1136/annrheumdis-2018-213328
Cuthert, R. J. et al. Evidence that tissue resident human enthesis γδT cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).
doi: 10.1136/annrheumdis-2019-215210
Mease, P. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).
pubmed: 26422723
doi: 10.1056/NEJMoa1412679
Mease, P. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).
pubmed: 27553214
doi: 10.1136/annrheumdis-2016-209709
Ritchlin, C. T. et al. Bimekizumab in patients with active psoriatic arthritis: results from a 48-week, randomised, double-blind, placebo-controlled, dose-ranging phase 2b trial. Lancet 395, 427–440 (2020).
pubmed: 32035552
doi: 10.1016/S0140-6736(19)33161-7
Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).
pubmed: 21606249
doi: 10.4049/jimmunol.1100123
Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).
pubmed: 11514607
pmcid: 2193502
doi: 10.1084/jem.194.4.519
Paulissen, S. M. J. et al. Synovial fibroblasts directly induce Th17 pathogenicity via the cyclooxygenase/prostaglandin E
pubmed: 23817417
doi: 10.4049/jimmunol.1300274
Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 64, 4125–4134 (2012).
pubmed: 23192794
doi: 10.1002/art.37695
McInnes, I. B. et al. Secukinumab provides rapid and sustained pain relief in psoriatic arthritis over 2 years: results from the FUTURE 2 study. Arthritis Res. Ther. 20, 113 (2018).
pubmed: 29880010
pmcid: 5992664
doi: 10.1186/s13075-018-1610-3
Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).
pubmed: 32132681
pmcid: 7186935
doi: 10.1038/s41577-020-0285-6
Van Dervort, A. L. et al. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J. Immunol. 152, 4102–4109 (1994).
pubmed: 8144975
Antoni, C. et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann. Rheum. Dis. 64, 1150–1157 (2005).
pubmed: 15677701
pmcid: 1755609
doi: 10.1136/ard.2004.032268
Kavanaugh, A. et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 73, 1020–1026 (2014).
pubmed: 24595547
doi: 10.1136/annrheumdis-2013-205056
Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–11550 (2017).
pubmed: 29045212
doi: 10.1056/NEJMoa1615975
McInnes, I. B. et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N. Engl. J. Med. 384, 1227–1239 (2021).
pubmed: 33789011
doi: 10.1056/NEJMoa2022516
Fiocco, U. et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin. Rheumatol. 34, 1571–1580 (2015).
pubmed: 26152611
doi: 10.1007/s10067-015-3002-2
Fiocco, U. et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol. Res. 58, 61–69 (2014).
pubmed: 24385089
doi: 10.1007/s12026-013-8481-0
O’Brien, A. et al. Targeting JAK-STAT signalling alters PsA synovial fibroblast pro-inflammatory and metabolic function. Front. Immunol. 12, 672461 (2021).
pubmed: 34248953
pmcid: 8264423
doi: 10.3389/fimmu.2021.672461
Costello, P., Bresnihan, B., O’Farrelly, C. & FitzGerald, O. Predominance of CD8+ T lymphocytes in psoriatic arthritis. J. Rheumatol. 26, 1117–1124 (1999).
pubmed: 10332977
Diani, M. et al. Increased frequency of activated CD8
pubmed: 31350460
pmcid: 6659700
doi: 10.1038/s41598-019-47310-5
Sokolova, M. V. et al. A set of serum markers detecting systemic inflammation in psoriatic skin, entheseal, and joint disease in the absence of C-reactive protein and its link to clinical disease manifestations. Arthritis Res. Ther. 22, 26 (2020).
pubmed: 32051028
pmcid: 7017480
doi: 10.1186/s13075-020-2111-8
Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).
pubmed: 34226188
doi: 10.1136/annrheumdis-2021-220280
Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).
pubmed: 24525911
doi: 10.1136/annrheumdis-2013-204858
Liphardt, A. M. et al. Similar impact of psoriatic arthritis and rheumatoid arthritis on objective and subjective parameters of hand function. ACR Open Rheumatol. 2, 734–740 (2020).
pubmed: 33241646
pmcid: 7738802
doi: 10.1002/acr2.11196
Simon, D. et al. Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann. Rheum. Dis. 75, 660–666 (2016).
pubmed: 25653201
doi: 10.1136/annrheumdis-2014-206347
Simon, D. et al. Structural entheseal lesions in patients with psoriasis are associated with an increased risk of progression to psoriatic arthritis. Arthritis Rheumatol. 74, 253–262 (2020).
doi: 10.1002/art.41239
Simon, D. et al. Simultaneous quantification of bone erosions and enthesiophytes in the joints of patients with psoriasis or psoriatic arthritis — effects of age and disease duration. Arthritis Res. Ther. 20, 203 (2018).
pubmed: 30170626
pmcid: 6117875
doi: 10.1186/s13075-018-1691-z
Zhang, X. et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J. Clin. Invest. 109, 1405–1415 (2002).
pubmed: 12045254
pmcid: 151001
doi: 10.1172/JCI0215681
Ono, T. et al. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).
pubmed: 26965320
pmcid: 4792964
doi: 10.1038/ncomms10928
El-Zayadi, A. A. et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology 56, 488–493 (2017).
pubmed: 27940584
Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64, 1540–1550 (2012).
pubmed: 22139865
pmcid: 4015187
doi: 10.1002/art.33504
Finzel, S. et al. Inflammatory bone spur formation in psoriatic arthritis is different from bone spur formation in hand osteoarthritis. Arthritis Rheumatol. 66, 2968–2975 (2014).
pubmed: 25048110
doi: 10.1002/art.38794
Ritchlin, C. T. et al. Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821–831 (2003).
pubmed: 12639988
pmcid: 153764
doi: 10.1172/JCI200316069
Lam, J. et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).
pubmed: 11120755
pmcid: 387259
doi: 10.1172/JCI11176
Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).
pubmed: 20167120
pmcid: 2875663
doi: 10.1186/ar2936
Uluckan, O. et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci. Transl. Med. 8, 330ra337 (2016).
doi: 10.1126/scitranslmed.aad8996
Simon, D. et al. Effect of disease-modifying anti-rheumatic drugs on bone structure and strength in psoriatic arthritis patients. Arthritis Res. Ther. 21, 162 (2019).
pubmed: 31269973
pmcid: 6607518
doi: 10.1186/s13075-019-1938-3
DeMarco, G. et al. Combined inhibition of tumor necrosis factor-alpha and interleukin12/23 for long-standing, refractory psoriatic disease: a differential role for cytokine pathways. Rheumatology 57, 2053–2055 (2018).
doi: 10.1093/rheumatology/key199
Zhu, L. J., Zhu, C. Y. & Fan, Y. M. Alcohol consumption and psoriatic risk: a meta-analysis of case-control studies. J. Dermatol. 39, 770–773 (2012).
pubmed: 22568495
doi: 10.1111/j.1346-8138.2012.01577.x
Green, A. et al. Modifiable risk factors and the development of psoriatic arthritis in people with psoriasis. Br. J. Dermatol. 182, 714–720 (2020).
pubmed: 31209855
doi: 10.1111/bjd.18227
Nguyen, U. S. et al. The smoking paradox in the development of psoriatic arthritis among psoriasis patients — a population-based study. Ann. Rheum. Dis. 77, 119–123 (2018).
pubmed: 29102956
doi: 10.1136/annrheumdis-2017-211625
Gisondi, P. et al. Biological disease-modifying antirheumatic drugs may mitigate the risk of psoriatic arthritis in patients with chronic plaque psoriasis. Ann. Rheum. Dis. 81, 68–73 (2022).
pubmed: 34144965
doi: 10.1136/annrheumdis-2021-219961
Kampylafka, E. et al. Disease interception with interleukin-17 inhibition in high-risk psoriasis patients with subclinical joint inflammation-data from the prospective IVEPSA study. Arthritis Res. Ther. 21, 178 (2019).
pubmed: 31349876
pmcid: 6659205
doi: 10.1186/s13075-019-1957-0