Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order.


Journal

RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657

Informations de publication

Date de publication:
23 Jul 2019
Historique:
received: 18 05 2019
accepted: 09 07 2019
entrez: 6 5 2022
pubmed: 29 7 2019
medline: 29 7 2019
Statut: epublish

Résumé

Nuclear singlet lifetimes are often dependent on the quantity of paramagnetic oxygen species present in solution, although the extent to which quenching or removing molecular oxygen has on extending singlet lifetimes is typically an unknown factor. Here we investigate the behaviour of the singlet relaxation time constant as a function of the oxygen concentration in solution. An experimental demonstration is presented for a chemically inequivalent proton pair of the tripeptide alanine-glycine-glycine in solution. We introduce a simple methodology to ensure the solution is saturated with predetermined concentrations of oxygen gas prior to measurements of the singlet lifetime. Singlet lifetimes were measured by using the spin-lock induced crossing pulse sequence. We present a linear relationship between the amount of oxygen dissolved in solution and the singlet relaxation rate constant. Singlet relaxation was found to be ∼2.7 times less sensitive to relaxation induced by paramagnetic oxygen compared with longitudinal relaxation. The relaxation behaviour is described by using a model of correlated fluctuating fields. We additionally examine the extension of singlet lifetimes by doping solutions with the chelating agent sodium ascorbate, which scavenges oxygen radicals in solution.

Identifiants

pubmed: 35514498
doi: 10.1039/c9ra03748a
pii: c9ra03748a
pmc: PMC9067289
doi:

Types de publication

Journal Article

Langues

eng

Pagination

23418-23424

Informations de copyright

This journal is © The Royal Society of Chemistry.

Déclaration de conflit d'intérêts

There are no conflicts of interest to declare.

Références

Annu Rev Phys Chem. 2012;63:89-105
pubmed: 22224703
Phys Chem Chem Phys. 2016 Jul 21;18(27):17965-72
pubmed: 27327382
Phys Chem Chem Phys. 2011 May 28;13(20):9128-30
pubmed: 21503368
J Chem Phys. 2014 Jan 7;140(1):014201
pubmed: 24410222
Angew Chem Int Ed Engl. 2014 Mar 24;53(13):3396-9
pubmed: 24623618
J Magn Reson. 2014 Feb;239:81-6
pubmed: 24457544
J Chem Phys. 2018 Aug 7;149(5):054202
pubmed: 30089381
Sci Adv. 2018 Mar 09;4(3):eaar2978
pubmed: 29536045
Phys Chem Chem Phys. 2019 Jan 30;21(5):2595-2600
pubmed: 30657502
J Phys Chem Lett. 2017 Aug 3;8(15):3549-3555
pubmed: 28708395
J Am Chem Soc. 2010 Jun 23;132(24):8225-7
pubmed: 20507094
Angew Chem Int Ed Engl. 2014 Oct 13;53(42):11376-80
pubmed: 25196717
J Magn Reson. 2014 Sep;246:27-30
pubmed: 25063953
J Chem Phys. 2005 Jun 1;122(21):214505
pubmed: 15974752
J Magn Reson. 2016 Jan;262:91-99
pubmed: 26462592
Phys Chem Chem Phys. 2017 Apr 19;19(16):10237-10254
pubmed: 28120964
Phys Chem Chem Phys. 2015 Oct 7;17(37):24370-5
pubmed: 26330001
J Am Chem Soc. 2012 Jul 11;134(27):11076-9
pubmed: 22686687
Phys Rev Lett. 2013 Oct 25;111(17):173002
pubmed: 24206484
J Chem Phys. 2019 Feb 14;150(6):064201
pubmed: 30769975
J Magn Reson. 2007 Jul;187(1):141-5
pubmed: 17498983
Chem Sci. 2018 Oct 25;10(2):413-417
pubmed: 30746089
Phys Chem Chem Phys. 2019 Mar 13;21(11):6087-6100
pubmed: 30810569
J Chem Phys. 2011 Jun 7;134(21):214505
pubmed: 21663365
Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6182-5
pubmed: 20665608
J Magn Reson. 2015 Mar;252:130-4
pubmed: 25697953
J Am Chem Soc. 2008 Sep 24;130(38):12582-3
pubmed: 18729363
J Magn Reson. 2016 Dec;273:56-64
pubmed: 27750072
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18469-73
pubmed: 19841270
Phys Rev Lett. 2004 Apr 16;92(15):153003
pubmed: 15169282
Magn Reson Chem. 2018 Jun;56(6):374-414
pubmed: 28809056
Science. 2009 Mar 27;323(5922):1711-4
pubmed: 19325112
Angew Chem Int Ed Engl. 2019 Feb 25;58(9):2879-2883
pubmed: 30629796
J Am Chem Soc. 1967 Aug 2;89(16):4176-85
pubmed: 6045609
J Am Chem Soc. 2012 May 9;134(18):7668-71
pubmed: 22509846
Nat Phys. 2012 Nov;8(11):831-837
pubmed: 23505397
J Magn Reson. 2019 Apr;301:49-55
pubmed: 30851665
Phys Chem Chem Phys. 2018 Sep 12;20(35):22463-22467
pubmed: 30132003
J Am Chem Soc. 2012 Oct 24;134(42):17494-7
pubmed: 23067426
Chemistry. 2014 Dec 15;20(51):17113-8
pubmed: 25346515
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63
pubmed: 12930897
J Phys Chem Lett. 2019 Apr 4;10(7):1523-1529
pubmed: 30864805
J Am Chem Soc. 2013 Jul 3;135(26):9632-5
pubmed: 23781874
ChemMedChem. 2014 Nov;9(11):2509-15
pubmed: 25196781
J Magn Reson. 2008 Aug;193(2):177-90
pubmed: 18511314
J Am Chem Soc. 2014 Oct 29;136(43):15118-21
pubmed: 25229309
Phys Chem Chem Phys. 2019 Jul 7;21(25):13696-13705
pubmed: 31198920
Phys Chem Chem Phys. 2015 Feb 28;17(8):5913-22
pubmed: 25633837
J Magn Reson. 2015 Dec;261:64-72
pubmed: 26529204
J Chem Phys. 2011 Nov 7;135(17):174502
pubmed: 22070301
Phys Chem Chem Phys. 2011 Apr 7;13(13):5556-60
pubmed: 21318206
J Magn Reson. 2017 Nov;284:1-7
pubmed: 28926738
Angew Chem Int Ed Engl. 2015 Mar 16;54(12):3740-3
pubmed: 25631745
J Chem Phys. 2009 Jun 7;130(21):214501
pubmed: 19508070
J Am Chem Soc. 2013 Apr 3;135(13):5084-8
pubmed: 23489087
J Chem Phys. 2019 Feb 14;150(6):064315
pubmed: 30769970
J Am Chem Soc. 2004 May 26;126(20):6228-9
pubmed: 15149209
Chemphyschem. 2016 Oct 5;17(19):2967-2971
pubmed: 27460052
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17135-9
pubmed: 20855584
Chemphyschem. 2019 Mar 4;20(5):766-772
pubmed: 30600920
Phys Chem Chem Phys. 2018 Apr 18;20(15):9755-9759
pubmed: 29595200
J Magn Reson. 2016 Feb;263:108-115
pubmed: 26774648
J Magn Reson. 2016 Nov;272:87-90
pubmed: 27665566
J Phys Chem B. 2015 Mar 12;119(10):4048-52
pubmed: 25658134

Auteurs

Bryan Erriah (B)

School of Chemistry, University of Southampton Southampton SO17 1BJ UK stuart-james.elliott@univ-lyon1.fr.

Stuart J Elliott (SJ)

School of Chemistry, University of Southampton Southampton SO17 1BJ UK stuart-james.elliott@univ-lyon1.fr.

Classifications MeSH