A stochastic simulation model for assessing the masking effects of road noise for wildlife, outdoor recreation, and bioacoustic monitoring.
Anthropogenic noise
Coupled dynamics
Habitat quality
Road ecology
Soundscape
Journal
Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
24
08
2020
accepted:
09
04
2022
pubmed:
7
5
2022
medline:
24
5
2022
entrez:
6
5
2022
Statut:
ppublish
Résumé
Traffic noise is one of the leading causes of reductions in animal abundances near roads. Acoustic masking of conspecific signals and adventitious cues is one mechanism that likely causes animals to abandon loud areas. However, masking effects can be difficult to document in situ and the effects of infrequent noise events may be impractical to study. Here, we present the Soundscapes model, a stochastic individual-based model that dynamically models the listening areas of animals searching for acoustic resources ("searchers"). The model also studies the masking effects of noise for human detections of the searchers. The model is set in a landscape adjacent to a road. Noise produced by vehicles traveling on that road is represented by calibrated spectra that vary with speed. Noise propagation is implemented using ISO-9613 procedures. We present demonstration simulations that quantify declines in searcher efficiency and human detection of searchers at relatively low traffic volumes, fewer than 50 vehicles per hour. Traffic noise is pervasive, and the Soundscapes model offers an extensible tool to study the effects of noise on bioacoustics monitoring, point-count surveys, the restorative value of natural soundscapes, and auditory performance in an ecological context.
Identifiants
pubmed: 35522293
doi: 10.1007/s00442-022-05171-2
pii: 10.1007/s00442-022-05171-2
pmc: PMC9072761
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
217-228Subventions
Organisme : National Science Foundation
ID : CNH 1414171
Organisme : Division of Environmental Biology
ID : DEB 1556177
Informations de copyright
© 2022. The Author(s).
Références
Nat Ecol Evol. 2020 Apr;4(4):502-511
pubmed: 32203474
Ecol Lett. 2011 Oct;14(10):1052-61
pubmed: 21806743
Glob Chang Biol. 2015 May;21(5):1809-20
pubmed: 25688983
J Exp Biol. 2008 Sep;211(Pt 17):2799-806
pubmed: 18723538
Curr Biol. 2011 Aug 23;21(16):R614-5
pubmed: 21854996
Environ Manage. 2008 Sep;42(3):480-96
pubmed: 18437455
Ecotoxicology. 2012 May;21(4):1225-39
pubmed: 22396021
Sci Rep. 2017 Oct 26;7(1):14119
pubmed: 29074942
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12105-9
pubmed: 26324924
Biol Rev Camb Philos Soc. 2016 Nov;91(4):982-1005
pubmed: 26118691
PLoS One. 2014 Jul 16;9(7):e102770
pubmed: 25029035
Science. 2017 May 5;356(6337):531-533
pubmed: 28473587
Environ Manage. 2009 Mar;43(3):425-35
pubmed: 19020928
Proc Biol Sci. 2013 Nov 06;280(1773):20132290
pubmed: 24197411
Trends Ecol Evol. 2010 Jul;25(7):419-27
pubmed: 20483503
J Acoust Soc Am. 2011 Mar;129(3):1375-80
pubmed: 21428501
J Acoust Soc Am. 2015 Oct;138(4):2090-105
pubmed: 26520292
Environ Health Perspect. 2006 Apr;114 Suppl 1:60-4
pubmed: 16818247
Environ Manage. 2002 Jun;29(6):782-800
pubmed: 11992171
Ecol Evol. 2015 Dec 29;6(1):245-55
pubmed: 26811789
Proc Biol Sci. 2011 Jun 7;278(1712):1646-52
pubmed: 21084347
J Environ Manage. 2017 Dec 1;203(Pt 1):245-254
pubmed: 28783021
Trends Ecol Evol. 2010 Mar;25(3):180-9
pubmed: 19762112
Proc Biol Sci. 2020 Dec 23;287(1941):20201811
pubmed: 33323075
Conserv Biol. 2011 Apr;25(2):406-11
pubmed: 21410531
Sci Rep. 2016 Aug 18;6:30602
pubmed: 27537709
Mol Ecol. 2008 Jan;17(1):72-83
pubmed: 17784917