Hitting Multiple Cellular Targets in Triple-Negative Breast Cancer Using Dual-Action Cisplatin(IV) Prodrugs for Safer Synergistic Chemotherapy.
breast cancer
cisplatin
drug delivery
nephrotoxicity
platinum(IV) prodrugs
Journal
ACS biomaterials science & engineering
ISSN: 2373-9878
Titre abrégé: ACS Biomater Sci Eng
Pays: United States
ID NLM: 101654670
Informations de publication
Date de publication:
13 06 2022
13 06 2022
Historique:
pubmed:
7
5
2022
medline:
15
6
2022
entrez:
6
5
2022
Statut:
ppublish
Résumé
Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations. Upon cellular reduction, these derivatives release cisplatin and axial ligands, acting as dual-action prodrugs. Hereby, we have developed three cisplatin(IV) conjugates using distinct bioactive axial moieties (valproate, tocopherol, and chlorambucil), which can synergistically complement cisplatin activity and attack multiple cellular targets. The designed derivatives showcased enhanced antiproliferative activity and improved therapeutic synergism along with a noteworthy cisplatin dose reduction index in a panel of six cancer cells. These Pt(IV) derivatives remarkably improved cellular drug uptake and showed lower dependency on copper transporter 1 (Ctr1) for uptake than cisplatin. The results of enhanced in vitro activity were well corroborated by in vivo efficacy testing in the 4T1 cell-based TNBC model, showcasing ∼2-7-folds higher tumor volume reduction for Pt(IV) derivatives than cisplatin. In addition, the designed derivatives significantly reduced the nephrotoxicity risk involved in cisplatin therapy, indicated by systemic toxicity biomarkers and organ histopathology. The results indicated that cisplatin(IV) derivatives could open new avenues for safer synergistic chemotherapy in TNBC.
Identifiants
pubmed: 35522530
doi: 10.1021/acsbiomaterials.1c01582
doi:
Substances chimiques
Antineoplastic Agents
0
Prodrugs
0
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM