Exogenous protease supplementation to the diet enhances growth performance, improves nitrogen utilization, and reduces stress in finishing pigs.
Bacillus clausii
Nitrogen
Pearlzyme
exogenous protease
Journal
Journal of animal physiology and animal nutrition
ISSN: 1439-0396
Titre abrégé: J Anim Physiol Anim Nutr (Berl)
Pays: Germany
ID NLM: 101126979
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
revised:
10
02
2022
received:
13
07
2021
accepted:
10
04
2022
pubmed:
7
5
2022
medline:
8
3
2023
entrez:
6
5
2022
Statut:
ppublish
Résumé
We have conducted this experiment to evaluate a new exogenous protease in finishing pigs' growth performance, nutrient digestibility, gas emission, blood profiles, and meat quality. A total of 200 pigs of 52.15 ± 2.31 kg average body weight (BW) were divided into four dietary treatments named as: CON, basal diet; TRT1, basal diet + 0.05% protease; TRT2, basal diet + 0.1% protease; TRT3, basal diet + 1.5% protease. Each treatment consisted of 10 pens, where five pigs were allotted to each pen according to their body weight and sex. The dietary treatments were allotted to the pens in a randomized block design. During this 10-week-long experiment, BW, average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated for Week 0-5, Week 6-10, and the overall period. During Week 6-10, ADG was higher in TRT2 and TRT3 than in the CON and TRT1 groups. At the same time, a linear increase was observed in ADG and G:F of the pigs. In addition, the final BW of pigs' was linearly increased by protease supplementation. On Week 10, there was a linear trend of increase (p = 0.0575) in crude protein digestibility and a trend of linear reduction (p = 0.0651) in NH
Substances chimiques
Nitrogen
N762921K75
Peptide Hydrolases
EC 3.4.-
Types de publication
Journal Article
Randomized Controlled Trial, Veterinary
Langues
eng
Sous-ensembles de citation
IM
Pagination
495-503Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
Albrecht, A., Hebel, M., & Heinemann, C. (2019). Assessment of meat quality and shelf life from broilers fed with different sources and concentrations of methionine. Journal of Food Quality, 2019, 1-10. https://doi.org/10.1155/2019/6182580
Mc Alpine, P. O., O'Shea, C. J., Varley, P. F., & O'Doherty, J. V. (2012). The effect of protease and xylanase enzymes on growth performance and nutrient digestibility in finisher pigs. Journal of Animal Science, 90, 375-377. https://doi.org/10.2527/jas.53979
AOAC. (2000). Official methods of analysis (17th ed.). Association of Official Analytical Chemists.
Applegate, T. J., & Angel, R. (2014). Nutrient requirements of poultry publications: History and need for an update. Journal of Applied Poultry Science, 23, 567-575. https://doi.org/10.3382/japr.2014-00980
Baxmann, A. C., Ahmed, M. S., Marques, N. C., Menon, V. B., Pereira, A. B., Kirsztajn, G. M., & Heilberg, I. P. (2008). Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clinical Journal of American Society of Nephrology, 3(2), 348-354. https://doi.org/10.2215/CJN.02870707
Cho, J. H., Kim, H. J., & Kim, I. H. (2014). Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livestock Science, 160, 82-88. https://doi.org/10.1016/j.livsci.2013.11.006
Choe, J., Kim, K. S., Kim, H. B., Park, S., Kim, J., Kim, S., Kim, B., Cho, S. H., Cho, J. Y., Park, I. H., Cho, J. H., & Song, M. (2017). Effects of protease on growth performance and carcass characteristics of growing finishing pigs. South African Journal of Animal Science, 47(5), https://doi.org/10.4314/sajas.v47i5.13
Cowieson, A. J., Zaefarian, F., Knap, I., & Ravindran, V. (2017). Interactive effects of dietary protein concentration, a mono-component exogenous protease and ascorbic acid on broiler performance, nutritional status and gut health. Animal Production Science, 57, 1058-1068. https://doi.org/10.1186/s13567-018-0559-1.hal-02973510.
Feijoo-Siota, L., & Villa, T. (2011). Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess and Technology, 4, 1066-1088. https://doi.org/10.1007/s11947-010-0431-4
Ferket, P. R., Van Heugten, E., Van Kempen, T. A. T. G., & Angel, R. (2002). Nutritional strategies to reduce environmental emissions from non-ruminants. Journal of Animal Science, 80, 168-182. https://doi.org/10.2527/animalsci2002.80E-Suppl_2E168x
Foury, A., Devillers, N., Sanchez, M. P., Griffon, H., Le Roy, P., & Mormède, P. (2005). Stress hormones, carcass composition and meat quality in large White × Duroc pigs. Meat Science, 69(4), 703-707. https://doi.org/10.1016/j.meatsci.2004.11.002
Guggenbuhl, P., Wache, Y., & Wilson, J. W. (2012). Effects of dietary supplementation with a protease on the apparent ileal digestibility of the weaned piglet. Journal of Animal Science, 90, 152-154. https://doi.org/10.2527/jas.53835
Hansen, A. M., Garde, A. H., Christensen, J. M., Eller, N. H., & Netterstrøm, B. (2001). Reference intervals and variation for urinary epinephrine, norepinephrine and cortisol in healthy men and women in Denmark. Clinical Chemistry and Laboratory Medicine, 39(9), 842-849. https://doi.org/10.1515/CCLM.2001.140
Hassan, Y. I., Lahaye, L., Gong, M. M., Peng, J., & Gong, J. (2018). Innovative drugs, chemicals, and enzymes within the animal production chain. Veterinary Research, 49(1), 71. https://doi.org/10.1186/s13567-018-0559-1
Hedemann, M. S., & Jensen, B. B. (2004). Variation in enzyme activity in stomach and pancreatic tissue and digesta in piglets around weaning. Archives of Animal Nutrition, 58, 152-154. https://doi.org/10.1080/00039420310001656677
Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49, 447-457. https://doi.org/10.1016/S0309-1740(98)00034-5
Huo, G. C., Fowler, V. R., Inborr, J., & Bedford, M. R. (1993). The use of enzymes to denature antinutritive factors in soybean. In Proceedings of the 2nd Workshop on ‘Antinutritional Factors (ANFs) in Legume Seed’, Wageningen, The Netherlands (p. 60).
Ji, F., Casper, D. P., Brown, P. K., Spangler, D. A., Haydon, K. D., & Pettigrew, J. E. (2008). Effects of dietary supplementation of an enzyme blend on the ileal and fecal digestibility of nutrients in growing pigs. Journal of Animal Science, 860, 1533-1543. https://doi.org/10.2527/jas.2007-0262
Jiang, W. D., Xu, J., Zhou, X. Q., Wu, P., Liu, Y., Jiang, J., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A., & Feng, L. (2017). Dietary protein levels regulated antibacterial activity, inflammatory response and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella) after challenged with Aeromonas hydrophila. Fish Shellfish Immunology, 68, 154-172. https://doi.org/10.1016/j.fsi.2017.07.019
Kaczmarek, S. A., Rogiewicz, A., Mogielnicka, M., Rutkowski, A., Jones, R. O., & Slominski, B. A. (2014). The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poultry Science, 93, 1745-1753.
Kim, J. M., Kang, S. M., Yoon, J. Y., Yang, Y. R., Kim, W., Jang, J. S., & Choi, Y. H. (2015). Effects of dietary pearlzyme on growth performance and development of digestive organs in broilers. Korean Journal of Poultry Science, 42, 291-297. https://doi.org/10.5536/KJPS.2015.42.4.291
Lemme, A., Ravindran, V., & Bryden, W. L. (2004). Ileal digestibility of amino acids in feed ingredients for broilers. Worlds Poultry Science Journal, 2004(60), 423-437. https://doi.org/10.1079/WPS200426
Mahmood, T., Mirza, M. A., Nawaz, H., Shahid, M., Athar, M., & Hussain, M. (2017). Effect of supplementing exogenous protease in low protein poultry by-product meal based diets on growth performance and nutrient digestibility in broilers. Animal Feed Science and Technology, 228, 23-31. https://doi.org/10.1016/j.anifeedsci.2017.01.012
Min, Y. J., Choi, Y. H., Choe, J. H., Kim, Y. H., Jeong, Y. D., Kim, D. W., Kim, J. E., Jung, H. J., & Song, M. H. (2019). Effects of dietary mixture of protease and probiotics on growth performance, blood constituents, and carcass characteristics of growing-finishing pigs. Journal of Animal Science and Technology, 61(5), 272-277. https://doi.org/10.5187/jast.2019.61.5.272
Nahm, K. H. (2003). Evaluation of the nitrogen content in poultry manure. World's Poultry Science Journal, 59, 77-88. https://doi.org/10.1079/WPS20030004
National Research Council (NRC). (2012). Nutrient requirements of poultry (9th rev ed.). National Academy of Sciences.
Ndazigaruye, G., Kim, D. H., Kang, C. W., Kang, K. R., Joo, Y. J., Lee, S. R., & Lee, K. W. (2019). Effects of low-protein diets and exogenous protease on growth performance, carcass traits, intestinal morphology, cecal volatile fatty acids and serum parameters in broilers. Animals: An Open Access Journal from MDPI, 9, 226. https://doi.org/10.3390/ani9050226
Nguyen, D. H., Lee, S. I., Cheong, J. Y., & Kim, I. H. (2018). Influence of low-protein diets and protease and bromelain supplementation on growth performance, nutrient digestibility, blood urine nitrogen, creatinine, and faecal noxious gas in growing-finishing pigs. Canadian Journal of Animal Science, 98, 488-497. https://doi.org/10.1139/cjas-2016-0116
Nir, I., Nitsan, Z., & Mahagna, M. (1993). Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. British Poultry Science, 34, 523-532. https://doi.org/10.1080/00071669308417607
O'Shea, C. J., Mc Alpine, P. O., Solan, P., Curran, T., Varley, P. F., Walsh, A. M., & Doherty, J. V. O. (2014). The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Animal Feed Science and Technology, 189, 88-97. https://doi.org/10.1016/j.anifeedsci.2013.11.012
Oxenboll, K. M., Pontoppidan, K., & Fru-Nji, F. (2011). Use of protease in poultry feed offers promising environmental benefits. International Journal of Poultry Science, 10, 842-848.
Pan, L., Zhao, P. F., Yang, Z. Y., Long, S. F., Wang, H. L., Tian, Q. Y., Xu, Y. T., Xu, X., Zhang, Z. H., & Piao, X. S. (2016). Effects of coated compound proteases on apparent total tract digestibility of nutrients and apparent ileal digestibility of amino acids for pigs. Asian Australasian Journal of Animal Science, 29(12), 1761-1767. https://doi.org/10.5713/ajas.16.0041
Park, J., Lee, J., Chae, B., & Ohh, S. (2009). Effects of different sources of dietary chromium on growth, blood profiles and carcass traits in growing-finishing pigs. Animal Bioscience, 22(11), 1547-1554. https://doi.org/10.5713/ajas.2009.80633
Patel, S. S., Molnar, M. Z., Tayek, J. A., Ix, J. H., Noori, N., Benner, D., Heymsfield, S., Kopple, J. D., Kovesdy, C. P., & Kalantar-Zadeh, K. (2013). Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. Journal of Cachexia Sarcopenia Muscle, 4(1), 19-29. https://doi.org/10.1007/s13539-012-0079-1
Peng, Q., Zeng, X. F., Zhu, J. L., Wang, S., Liu, X. T., Hou, C. L., Thacker, P. A., & Qiao, S. Y. (2016). Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poultry Science, 95, 893-900.
Tactacan, G. B., Cho, S. Y., Cho, J. H., & Kim, I. H. (2016). Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Australasian Journal of Animal Science, 29, 998-1003. https://doi.org/10.5713/ajas.15.0886
Torres-Pitarch, A., Manzanilla, E. G., Gardiner, G. E., O'Doherty, J. V., & Lawlor, P. G. (2019). Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Animal Feed Science and Technology, 251, 153-165. https://doi.org/10.1016/j.anifeedsci.2018.12.007
Upadhaya, S. D., Yun, H. M., & Kim, I. H. (2016). Influence of low or high density corn and soybean meal-based diets and protease supplementation on growth performance, apparent digestibility, blood characteristics and noxious gas emission of finishing pigs. Animal Feed Science and Technology, 216, 281-287. https://doi.org/10.1016/j.anifeedsci.2016.04.003
Vingerhoets, A. J. J. M. (2001). Assessment in behavioral medicine (pp. 413-421). Psychology Press.
Williams, C. H., David, D. J., & Iismaa, O. (1962). The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. Journal of Agricultural Science, 59, 381-385. https://doi.org/10.1017/S002185960001546X
Xu, J., Feng, L., Jiang, W. D., Wu, P., Liu, Y., Jiang, J., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A., & Zhou, X. Q. (2016). Effects of dietary protein levels on the disease resistance, immune function and physical barrier function in the gill of grass carp (Ctenopharyngodon idella) after challenged with Flavobacterium columnare. Fish Shellfish Immunology, 57, 1-16. https://doi.org/10.1016/j.fsi.2016.08.024
Yan, L., Meng, Q. W., & Kim, I. H. (2011). The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livestock Science, 141, 143-147. https://doi.org/10.1016/j.livsci.2011.05.011
Zuo, J., Ling, B., Long, L., Li, T., Lahaye, L., Yang, C., & Feng, D. (2015). Effect of dietary supplementation with protease on growth performance, nutrient digestibility, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Animal Nutrition, 1, 276-282.