Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries.

Zn-I 2 batteries advanced Zn anodes coordination chemistry desolvation energy barrier electrode-electrolyte interfaces

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
Jun 2022
Historique:
revised: 11 04 2022
received: 10 01 2022
pubmed: 7 5 2022
medline: 7 5 2022
entrez: 6 5 2022
Statut: ppublish

Résumé

Aqueous Zn batteries (AZBs) have attracted extensive attention due to good safety, cost-effectiveness, and environmental benignity. However, the sluggish kinetics of divalent zinc ion and the growth of Zn dendrites severely deteriorate the cycling stability and specific capacity. The authors demonstrate modulation of the interfacial redox process of zinc via the dynamic coordination chemistry of phytic acid with zinc ions. The experimental results and theoretical calculation reveal that the in-situ formation of such inorganic-organic films as a dynamic solid-electrolyte interlayer is efficient to buffer the zinc ion transfer via the energy favorable coordinated hopping mechanism for the reversible zinc redox reactions. Especially, along the interfacial coating layer with porous channel structure is able to regulate the solvation structure of zinc ions along the dynamic coordination of the phytic acid skeleton, efficiently inhibiting the surface corrosion of zinc and dendrite growth. Therefore, the resultant Zn anode achieves low voltage hysteresis and long cycle life at rigorous charge and discharge circulation for fabricating highly robust rechargeable batteries. Such an advanced strategy for modulating ion transport demonstrates a highly promising approach to addressing the basic challenges for zinc-based rechargeable batteries, which can potentially be extended to other aqueous batteries.

Identifiants

pubmed: 35523732
doi: 10.1002/smll.202200168
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200168

Subventions

Organisme : National Natural Science Foundation of China
ID : 22175108
Organisme : Natural Scientific Foundation of Shandong Province
ID : ZR2020JQ09
Organisme : Taishan Scholars Program of Shandong Province
ID : tsqn20161004
Organisme : Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province
ID : 2019KJC025

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

a) M. Zhu, S. Li, B. Li, Y. Gong, Z. Du, S. Yang, Sci. Adv. 2019, 5, eaau6264;
b) H. Yuan, J. Nai, H. Tian, Z. Ju, W. Zhang, Y. Liu, X. Tao, X. W. D. Lou, Sci. Adv. 2020, 6, eaaz3112;
c) P. Hundekar, S. Basu, X. Fan, L. Li, A. Yoshimura, T. Gupta, V. Sarbada, A. Lakhnot, R. Jain, S. Narayanan, Y. Shi, C. Wang, N. Koratkar, Proc. Natl. Acad. Sci. USA 2020, 117, 5588.
L. Ma, M. A. Schroeder, O. Borodin, T. P. Pollard, M. S. Ding, C. Wang, K. Xu, Nat. Energy 2020, 5, 743.
M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
a) S. B. Wang, Q. Ran, R. Q. Yao, H. Shi, Z. Wen, M. Zhao, X. Y. Lang, Q. Jiang, Nat. Commun. 2020, 11, 1634;
b) H. Jia, Z. Wang, M. Dirican, S. Qiu, C. Y. Chan, S. Fu, B. Fei, X. Zhang, J. Mater. Chem. A 2021, 9, 5597.
a) G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480;
b) S. Chen, K. Li, K. S. Hui, J. Zhang, Adv. Funct. Mater. 2020, 30, 2003890;
c) C. Wu, H. Tan, W. Huang, W. Li, K. N. Dinh, C. Yan, W. Wei, L. Chen, Q. Yan, Adv. Funct. Mater. 2020, 30, 2003187;
d) J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi, C. Wu, W. Manalastas, J. Ma, W. Fang, Y. Zheng, C.-F. Du, M. Srinivasan, Q. Yan, Nano Energy 2019, 62, 94;
e) Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, Small Struct. 2021, 2, 2100119.
W. Du, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, C. C. Li, Energy Environ. Sci. 2020, 13, 3330.
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem., Int. Ed. 2020, 59, 9377.
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan, D. Wang, Z. Huang, X. Li, J. Fan, C. Zhi, Adv. Mater. 2019, 31, 1903778.
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, Adv. Mater. 2020, 32, 2003021.
a) L. Wang, N. Li, T. Wang, Y. Yin, Y. Guo, C. Wang, Electrochim. Acta 2017, 244, 172;
b) Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1903675;
c) Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem., Int. Ed. 2019, 58, 15841.
J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.
J. Zheng, J. Yin, D. Zhang, G. Li, D. C. Bock, T. Tang, Q. Zhao, X. Liu, A. Warren, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, C. D. Rahn, L. A. Archer, Sci. Adv. 2020, 6, eabb1122.
M. Q. Xu, W. S. Li, X. X. Zuo, J. S. Liu, X. Xu, J. Power Sources 2007, 174, 705.
a) P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528;
b) S. Bhoyate, S. Mhin, J. E. Jeon, K. Park, J. Kim, W. Choi, ACS Appl. Mater. Interfaces 2020, 12, 27249.
J. Zhi, S. Li, M. Han, P. Chen, Sci. Adv. 2020, 6, eabb1342.
Z. Wei, Y. Zhang, L. Zhao, J. Liu, X. Li, J. Phys. Chem. A 2005, 109, 1337.
Y. D. Tsai, C. C. Hu, C. C. Lin, Electrochim. Acta 2007, 53, 2040.
X. Wang, Y. Wan, W. Hu, I. M. Chou, J. Cao, X. Wang, M. Wang, Z. Li, Geochim. Cosmochim. Acta 2016, 181, 126.
a) X. Wu, J. J. Hong, W. Shin, L. Ma, T. Liu, X. Bi, Y. Yuan, Y. Qi, T. W. Surta, W. Huang, J. Neuefeind, T. Wu, P. A. Greaney, J. Lu, X. Ji, Nat. Energy 2019, 4, 123;
b) Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding, X. Chen, Y. Song, L. Yang, H. Lin, S. Li, F. Pan, Angew. Chem., Int. Ed. 2021, 60, 4169.
J. Song, B. Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu, B. Han, Angew. Chem., Int. Ed. 2015, 54, 9399.
R. Yan, W. He, T. Zhai, H. Ma, Appl. Surf. Sci. 2018, 442, 264.
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou, S. Liang, Adv. Funct. Mater. 2020, 30, 2000599.
R. Yan, X. Gao, W. He, R. Guo, R. Wu, Z. Zhao, H. Ma, RSC Adv. 2017, 7, 41152.
Z. Li, L. Wu, S. Dong, T. Xu, S. Li, Y. An, J. Jiang, X. Zhang, Adv. Funct. Mater. 2020, 31, 2006495.
L. Gao, C. Zhang, M. Zhang, X. Huang, X. Jiang, J. Alloys Compd. 2009, 485, 789.
a) H. Shi, E.-H. Han, F. Liu, S. Kallip, Appl. Surf. Sci. 2013, 280, 325;
b) A. Zając, L. Dymińska, J. Lorenc, M. Ptak, J. Hanuza, J. Mol. Struct. 2018, 1156, 483.
a) M. Liu, J. Cai, H. Ao, Z. Hou, Y. Zhu, Y. Qian, Adv. Funct. Mater. 2020, 30, 2004885;
b) R. Yuksel, O. Buyukcakir, W. K. Seong, R. S. Ruoff, Adv. Energy Mater. 2020, 10, 1904215.
J. Sun, M. Ren, L. Yu, Z. Yang, L. Xie, F. Tian, Y. Yu, Z. Ren, S. Chen, H. Zhou, Small 2019, 15, 1804272.
a) K. Pandi, T. R. N. Kumar, S. K. Lakhera, B. Neppolian, Energy Technol. 2020, 8, 2000481;
b) C.-H. Kim, J.-H. Lee, W.-S. Shin, Bull. Korean Chem. Soc. 2010, 31, 789.
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503.
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energy Environ. Sci. 2021, 14, 3609.
J. Paier, R. Hirschl, M. Marsman, G. Kresse, J. Chem. Phys. 2005, 122, 234102.
a) X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun, L. F. Nazar, Nat. Energy 2017, 2, 17119;
b) J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Angew. Chem., Int. Ed. 2021, 60, 2861.
J. Ming, J. Guo, C. Xia, W. Wang, H. N. Alshareef, Mater. Sci. Eng.: R 2019, 135, 58.
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.
a) C. J. Lan, C. Y. Lee, T. S. Chin, Electrochim. Acta 2007, 52, 5407;
b) Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938.
J. Y. Kim, G. Liu, G. Y. Shim, H. Kim, J. K. Lee, Adv. Funct. Mater. 2020, 30, 2004210.
a) Y. Yang, S. Liang, J. Zhou, Curr. Opin. Electrochem. 2021, 30, 100761;
b) Y. Yang, S. Liang, B. Lu, J. Zhou, Energy Environ. Sci. 2022, 15, 1192.
K. Li, S. Chen, S. Chen, X. Liu, W. Pan, J. Zhang, Nano Res. 2018, 12, 549.
a) G. Kresse, J. Furthmiiller, Comput. Mater. Sci. 1996, 6, 15;
b) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
a) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758;
b) P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

Auteurs

Song Chen (S)

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Qianwu Chen (Q)

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Jizhen Ma (J)

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Jianjun Wang (J)

State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.

Kwan San Hui (KS)

School of Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK.

Jintao Zhang (J)

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Classifications MeSH