Investigation of the combustion process of fish scales from Northeast Brazil in a drop tube furnace (DTF).
Burnout
Combustion
DTF
Fish scales
Pollutant emissions
Solid wastes
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
23
10
2021
accepted:
02
05
2022
pubmed:
7
5
2022
medline:
24
9
2022
entrez:
6
5
2022
Statut:
ppublish
Résumé
The waste generated by the global fishing industry, such as fish scales, is mostly considered useless and discarded in a disorderly and/or unplanned way in inappropriate places, posing serious risks to both the environment and human health. This study proposes the use of fish scales in combustion processes as an alternative for such residues and to avoid their exposure in urban areas. Combustion experiments were conducted in a drop tube furnace (DTF), and the factors temperature, residence time, and sample particle size were investigated. The main atmospheric pollutants (CO, NO, CO
Identifiants
pubmed: 35524094
doi: 10.1007/s11356-022-20643-x
pii: 10.1007/s11356-022-20643-x
doi:
Substances chimiques
Air Pollutants
0
Environmental Pollutants
0
Hydroxyapatites
0
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
67270-67286Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Almeida ZS, Isaac VJ, Paz AC, Morais GC, Porto HLR (2011) Fassessment of potential fishery production system hake-yellow (Cynoscion acoupa) captured by fleet of commercial Araçagi, Raposa, Maranhão. Boletim do Laboratório de Hidrobiologia 24:35–42. https://doi.org/10.18764/1981-6421e2019.5
doi: 10.18764/1981-6421e2019.5
American Society for Testing and Materials - ASTM D2013 (1986) Standard method of preparing coal samples for analysis
Arumugam A, Ponnusami V (2017) Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon. https://doi.org/10.1016/j.heliyon.2017.e00486
Athinarayanan J, Periasamy VS, Alshatwi AA (2020) Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.111313
Ballester J, Barroso J, Cerecedo LM, Ichaso R (2005) Comparative study of semi-industrial-scale flames of pulverized coals and biomass. Combust Flame 141:204–215. https://doi.org/10.1016/j.combustflame.2005.01.005
doi: 10.1016/j.combustflame.2005.01.005
Bermúdez-Penabad N, Kennes C, Veiga MC (2017) Anaerobic digestion of tuna waste for the production of volatile fatty acids. Waste Manag 68:6–102. https://doi.org/10.1016/j.wasman.2017.06.010
doi: 10.1016/j.wasman.2017.06.010
Bhagwat PK, Dandge PB (2016) Isolations, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal Agric Biotechnol 7:234–240. https://doi.org/10.1016/j.bcab.2016.06.010
doi: 10.1016/j.bcab.2016.06.010
Biswas S et al (2006) Studies on the combustion behavior of blends of Indian coals by TGA and drop tube furnace. Fuel Process Technol 87:191–199. https://doi.org/10.1016/j.fuproc.2005.05.002
doi: 10.1016/j.fuproc.2005.05.002
Branco V, Costa M (2017) Effect of particle size on the burnout and emissions of particulate matter from the combustion of pulverized agricultural residues in a drop tube furnace. Energy Convers Manag 149:774–780. https://doi.org/10.1016/j.enconman.2017.03.012
doi: 10.1016/j.enconman.2017.03.012
Brazilian Association of Fish Farming – ABP (2020) Anuário Peixe BR da Piscicultura. https://www.peixebr.com.br/anuario-2020/ . Accessed 28 June 2021 (in Portuguese)
Buraiki NS, Albadri B, Alsheriq S et al (2020) Characterization of Catla catla and Oreochromis niloticus fish scales derived hydroxyapatite scaffolds for regenerative medicine. Mater Today: Proc 27:2609–2616. https://doi.org/10.1016/j.matpr.2019.11.074
doi: 10.1016/j.matpr.2019.11.074
Castañeda D, Lozano JM, Suárez H (2016) Microstructural changes and the effect on myofibril proteins in yamu (Bryconamazonicus) fish meat during cold storage. Agronomia Colombiana 34:403–414. https://doi.org/10.15446/agron.colomb.v34n3.61316
doi: 10.15446/agron.colomb.v34n3.61316
Ching-Velasquez J, Fernández-Lafuente R, Rodrigues RC et al (2020) Production and characterization of biodiesel from oil fish waste by enzymatic catalysis. Renew Energy 153:1346–1354. https://doi.org/10.1016/j.renene.2020.02.100
doi: 10.1016/j.renene.2020.02.100
Chinh NT, Manh VQ, Trung VQ et al (2019) Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Nat Prod Commun. https://doi.org/10.1177/1934578X19866288
Cloke M, Lester E, Thompson AW (2002) Combustion characteristics of coal using a drop-tube furnace. Fuel 81:727–735. https://doi.org/10.1016/S0016-2361(01)00199-5
doi: 10.1016/S0016-2361(01)00199-5
Coelho P, Costa M (2007) Combustão. Edições Orion, Alfragide
Côrtes LN, Druzian SP, Streit AFM et al (2019) Biochars from animal wastes as alternative materials to treat colored effluents containing Basic Red 9. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103446
Crepaldi AL, Evangelista-Barreto NS, Guedes CS et al (2018) Degradation of fish scales by fungi of the genus Paecilomyces. Revista Magistra 29:346–355
Cruz G, Crnkovic PM (2019) Assessment of the physical-chemical properties of residues and emissions generated by biomass combustion under N
doi: 10.1007/s10973-019-08238-0
Cruz G, Braz CEM, Ávila I, Crnkovic PM (2018) Physico-chemical properties of brazilian biomass: potential applications as renewable energy source. Afr J Biotechnol. https://doi.org/10.5897/AJB2017.16296
DB-CITY (2021) São Luís Geography. https://pt.db-city.com/Brasil%2D%2DMaranh%C3%A3o%2D%2DS%C3%A3o-Lu%C3%ADs . Accessed 15 mar 21
Deb P, Barua E, Lala S et al (2019) Synthesis of hydroxyapatite from Labeorohita fish scale for biomedical application. Mater Today: Proc 15:277–283. https://doi.org/10.1016/j.matpr.2019.05.006
doi: 10.1016/j.matpr.2019.05.006
Deer WA, Howie RA, Zussman J (2000) Minerais constituintes das rochas: Uma introdução. Fundação Calouste Gulbenkian, pp 683-688.
Dhote L, Pandey RA, Middey A et al (2021) Co-combustion of distillery sludge and coal for application in boiler and subsequent utilization of the generated bottom ash. Environ Sci Pollut Res 28:36742–36752. https://doi.org/10.1007/s11356-021-13277-y
doi: 10.1007/s11356-021-13277-y
Duan L, Duan Y, Zhao C, Anthony EJ (2015) NO emission during co-firing coal and biomass in oxy-fuel circulating fluidizes bed combustor. Fuel 150:8–13. https://doi.org/10.1016/j.fuel.2015.01.110
doi: 10.1016/j.fuel.2015.01.110
Fadhil AB, Ahmed AI, Salih A (2017) Production of liquid fuels and activated carbons from fish waste. Fuel 187:435–445. https://doi.org/10.1016/j.fuel.2016.09.064
doi: 10.1016/j.fuel.2016.09.064
Farrow TS, Sun C, Snape CE (2015) Impact of CO
doi: 10.1016/j.jaap.2015.02.013
Feltes MMC, Correia JFG, Beirão LH et al (2010) Alternatives for adding value for the fish processing wastes. Revista Brasileira de Engenharia Agrícola e Ambiental 14:669–677. https://doi.org/10.1590/S1415-43662010000600014
doi: 10.1590/S1415-43662010000600014
Fernández RG, García CP, Lavín AG et al (2012) Study of main combustion characteristics for biomass fuels used in boilers. Fuel Process Technol 103:16–26. https://doi.org/10.1016/j.fuproc.2011.12.032
doi: 10.1016/j.fuproc.2011.12.032
Ferrari TC, Neto RM, Santos OAA et al (2019) Microscopia eletrônica aplicada em nanomateriais: catalisador sol-gel CuO/ZnO/Al
doi: 10.34115/basrv3n6-036
Fiori MGS, Schoenhal SM, Follador FAC (2008) Analysis of the time-efficiency evolution of two agro-industrial wastes in the aerobic composting process. Engenharia Ambiental: Pesquisa e Tecnologia 5:178–191
Food and Agriculture Organization of the United Nations - FAO (2018) The state of world fisheries and aquaculture: Meeting the sustainable development goals. Roma. https://www.fao.org/publications/card/en/c/CA0191EN/ . Accessed 10 Apr 2021
Ghaly AE, Ramakrishnan VV, Brooks MS et al (2013) Fish processing wastes as a potential source of proteins, aminoacids and oils: a critical review. J Microbial Biochem Technol 5:107–129. https://doi.org/10.4172/1948-5948.1000110
doi: 10.4172/1948-5948.1000110
Gumisiriza R, Mshandete AM, Rubindamayugi MST et al (2009) Nile perch fish processing waste along Lake Victoria in East Africa: auditing and characterization. Afr J Environ Sci Technol 3:13–20. https://doi.org/10.5897/AJEST08.149
doi: 10.5897/AJEST08.149
Hemanandh J, Ganesan S, Hemanandh S et al (2021) Environmental impact of the waste fish fry oil in DI diesel engine. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.03.242
Hla SS, Lopes R, Roberts D (2016) The CO
doi: 10.1016/j.fuel.2016.08.039
Huang CY, Kuo JM, Wu SJ et al (2016) Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro extraction process. Food Chem 190:997–1006. https://doi.org/10.1016/j.foodchem.2015.06.066
doi: 10.1016/j.foodchem.2015.06.066
Ikoma T, Kobayashi H, Tanaka J et al (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142:327–333. https://doi.org/10.1016/S1047-8477(03)00053-4
doi: 10.1016/S1047-8477(03)00053-4
Jaligot R, Chenal J (2018) Decoupling municipal solid waste generation and economic growth in the canton of Vaud, Switzerland. Resour Conserv Recycl 130:260–266. https://doi.org/10.1016/j.resconrec.2017.12.014
doi: 10.1016/j.resconrec.2017.12.014
Jenkins BM, Baxter LL, Miles TR Jr et al (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3
doi: 10.1016/S0378-3820(97)00059-3
Kara K, Ouanji F, Lotfi EM et al (2018) Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt J Pet 27:249–255. https://doi.org/10.1016/j.ejpe.2017.07.010
doi: 10.1016/j.ejpe.2017.07.010
Karkal SK, Kudre TG (2020) Valorization of fish discards for sustainable production of renewable fuels. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122985
Kazanc F, Khatami R, Crnkovic PM et al (2011) Emissions of NO
doi: 10.1021/ef200413u
Lehmann J, Joseph S (2009) Biochar for environmental management: Science, technology and implementation. Earthscan Publications, London
Lima CJM (2015) Potencial catalítico do fosfato de cálcio para combustíveis líquidos. Novas Edições Acadêmicas, Brasil
Liu X, Asim T, Zhu G, Mishra R (2020) Theoretical and experimental investigations on the combustion characteristics of three components mixed municipal solid waste. Fuel 267:117183. https://doi.org/10.1016/j.fuel.2020.117183
doi: 10.1016/j.fuel.2020.117183
Lustosa-Neto AD, Nunes ML, Maia LP et al (2018) The fishery and aquaculture products industry. Acta Fish Aquat Resources 6:28–48. https://doi.org/10.2312/Actafish.2018.6.2.28-48
doi: 10.2312/Actafish.2018.6.2.28-48
Lv S, Hu L, Xia C et al (2021) Surface-treated fish scale powder with silane coupling agent in asphalt for performance improvement: conventional properties, rheology, and morphology. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127772
Manwatkar P, Dhote L, Pandey RA et al (2021) Combustion of distillery sludge mixed with coal in a drop tube furnace and emission characteristics. Energy. https://doi.org/10.1016/j.energy.2021.119871
Martins CA, Ferreira MA (2010) Considerations on the formation of NO
Martins GI, Secco D, Rosa HA et al (2015) Physical and chemical properties of fish oil biodiesel produced in Brazil. Renew Sust Energ Rev 42:154–157. https://doi.org/10.1016/j.rser.2014.10.024
doi: 10.1016/j.rser.2014.10.024
Medeiros EF, Vieira BM, Pereira CMP et al (2019) Production of biodiesel using oil obtained from fish processing residue by conventional methods assisted by ultrasonic waves: heating and stirring. Renew Energy 143:1357–1365. https://doi.org/10.1016/j.renene.2019.05.079
doi: 10.1016/j.renene.2019.05.079
Mondal S, Mondal B, Dey A et al (2012) Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes. J Miner Mater Charact Eng 11:55–67. https://doi.org/10.4236/jmmce.2012.111005
doi: 10.4236/jmmce.2012.111005
Mortari DA, Pereira FM, Crnkovic PM (2020) Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse. Energy. https://doi.org/10.1016/j.energy.2020.117824
Mortari DA, Perondi D, Rossi GB et al (2021) The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis. Fuel. https://doi.org/10.1016/j.fuel.2020.118880
Osaki F, Darolt MR (1991) Study of the quality of vegetable ash for use as fertilizers in the metropolitan region of Curitiba. Setor Ciências Agrárias 11:197–205
Osório E, Gomes ML, Vilela CF et al (2006) Evaluation of petrology and reactivity of coal blends for use in pulverized coal injection (PCI). Int J Coal Geol 68:14–29. https://doi.org/10.1016/j.coal.2005.11.007
doi: 10.1016/j.coal.2005.11.007
Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol 101:3737–3742. https://doi.org/10.1016/j.biortech.2009.12.133
doi: 10.1016/j.biortech.2009.12.133
Paul S, Pal A, Choudhury AR et al (2017) Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram Int 43:15678–15684. https://doi.org/10.1016/j.ceramint.2017.08.127
doi: 10.1016/j.ceramint.2017.08.127
Payne KJ, Veis A (1988) Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers 27:1749–1760. https://doi.org/10.1002/bip.360271105
doi: 10.1002/bip.360271105
Pickler E, Filho JERV (2017) Evolução da piscicultura no Brasil: Diagnóstico e desenvolvimento da cadeia produtiva de tilápia. http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_2328.pdf . Accessed 10 mar 2019
Pires KS, Sousa WKB, Cutrim FJ (2016) State Plan for solid waste of Maranhão. https://jus.com.br/artigos/54354/o-plano-estadual-de-residuos-solidos-do-maranhao . Accessed 18 Mar 2022
Qin D, Bi S, You X et al (2022) Development and application of fish scale wastes as versatile natural biomaterials. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131102
Ribeiro C, Scheufele FB, Alves HJ et al (2019) Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales. Environ Technol 40:2373–2388. https://doi.org/10.1080/09593330.2018.1441332
doi: 10.1080/09593330.2018.1441332
Rigo ECS, Gehrke SA, Carbonari M (2007) Synthesis and characterization of hydroxyapatite obtained by the precipitation method. Revista Dental Press Periodontia Implantol 1:39–50
San Miguel G, Domínguez MP, Hernández M et al (2012) Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass Bioenergy 47:134–144. https://doi.org/10.1016/j.biombioe.2012.09.049
doi: 10.1016/j.biombioe.2012.09.049
Sankar S, Sekar S, Mohan R et al (2008) Preparations and partial characterization of collagen sheet from fish (Latescal carifer) scales. Int J Biol Macromol 42:6–9. https://doi.org/10.1016/j.ijbiomac.2007.08.003
doi: 10.1016/j.ijbiomac.2007.08.003
Santana CA, Piccirillo C, Pereira SIA et al (2019) Employment of phosphate solubilizing bacteria on fish scales – Turning food waste into an available phosphorus source. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103403
Santos EB, Vieira EFS, Cestari AR et al (2009) Characterization of the piau fish (Leporinus elongatus) scales and their applicatin to remove Cu (II) from aqueous solutions. Química Nova 32:132–138. https://doi.org/10.1590/S0100-40422009000100026
doi: 10.1590/S0100-40422009000100026
Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of South Asian waste coconut shell and characterization of Gas, Bio-char, and Bio-Oil. Energies. https://doi.org/10.3390/en13081970
Shi P, Liu M, Yu C et al (2018) Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater Sci Eng 90:706–712. https://doi.org/10.1016/j.msec.2018.04.026
doi: 10.1016/j.msec.2018.04.026
Silva SN, Pereira MM, Goes AM et al (2003) Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res 4:475–481. https://doi.org/10.1002/jbm.a.10544
doi: 10.1002/jbm.a.10544
Silva AVS, Torquato LDM, Cruz G (2019) Potential application of fish scales as feedstock in thermochemical processes for the clean energy generation. Waste Manag 100:91–100. https://doi.org/10.1016/j.wasman.2019.09.007
doi: 10.1016/j.wasman.2019.09.007
Silva AVS, Mortari DA, Pereira FM, Cruz G (2021) Assessment of the fish scales and coal blends combustion in a Drop Tube Furnace (DTF). 26th International Congress of Mechanical Engineering. ABCM, Brazil https://doi.org/10.26678/abcm.cobem2021.cob2021-1040
Sockalingam K, Abdullah HZ (2015) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromismossambicus) scales. AIP Conf Proc. https://doi.org/10.1063/1.4919191
Svoboda K, Pohorely M, Hartman M et al (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process Technol 90:629–635. https://doi.org/10.1016/j.fuproc.2008.12.005
doi: 10.1016/j.fuproc.2008.12.005
Tan Z (2014) Air Pollution and Greenhouse Gases. Springer, Canada
doi: 10.1007/978-981-287-212-8
Veeruraj A, Arumugam M, Balasubramanian T (2013) Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochem 48:1592–1602. https://doi.org/10.1016/j.procbio.2013.07.011
doi: 10.1016/j.procbio.2013.07.011
Wang G, Silva RB, Azevedo JLT et al (2014) Evaluation of the combustion behavior and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace. Fuel 117:809–824. https://doi.org/10.1016/j.fuel.2013.09.080
doi: 10.1016/j.fuel.2013.09.080
Williams A, Jones JM, Ma L et al (2012) Pollutants from the combustion of solid biomass fuels. Prog Energy Combust Sci 38:113–137. https://doi.org/10.1016/j.pecs.2011.10.001
doi: 10.1016/j.pecs.2011.10.001
Yang B, Peng L, Wang Y et al (2018) The characteristics of air pollutants from the combustion of biomass pellets. Energy Sources Part A Recov Util Environ Effects 40:351–357. https://doi.org/10.1080/15567036.2017.1419515
doi: 10.1080/15567036.2017.1419515
Zellagui S, Trouvé G, Schonnenbeck C et al (2017) Parametric study on the particulate matter emissions during solid fuel combustion in a drop tube furnace. Fuel 189:358–368. https://doi.org/10.1016/j.fuel.2016.10.104
doi: 10.1016/j.fuel.2016.10.104
Zhao BT, Su YX, Liu DY et al (2016) SO
doi: 10.1016/j.energy.2016.07.107
Zheng S, Hu Y, Wang Z et al (2020) Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends. J Energy Inst 93:1371–1381. https://doi.org/10.1016/j.joei.2019.12.007
doi: 10.1016/j.joei.2019.12.007
Zhu Y, Chen Y, Cheng W et al (2021) Reduction of fine particulate matter emissions from cornstalk combustion by calcium phosphates additives. Fuel. https://doi.org/10.1016/j.fuel.2020.119303