Anterior chamber enhancement predicts optic nerve infiltration in retinoblastoma.
Child
Humans
Anterior Chamber
/ diagnostic imaging
Contrast Media
/ pharmacology
Magnetic Resonance Imaging
/ methods
Neoplasm Invasiveness
/ pathology
Optic Nerve
/ metabolism
Retinal Neoplasms
/ diagnostic imaging
Retinoblastoma
/ metabolism
Retrospective Studies
Vascular Endothelial Growth Factor A
Gadolinium
Glymphatic system
Magnetic resonance imaging
Optic nerve
Retinoblastoma
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
02
09
2021
accepted:
26
03
2022
revised:
15
03
2022
pubmed:
8
5
2022
medline:
19
11
2022
entrez:
7
5
2022
Statut:
ppublish
Résumé
As described recently, intravenously injected gadolinium-based contrast agent (GBCA) penetrates into the anterior eye chamber (AC) and is drained from the retina to the distal optic nerve (ON) along perivascular spaces, which serves retinal homeostasis and was termed the orbital glymphatic system (GS). Independently, AC enhancement predicted ON infiltration, a major risk factor for advanced retinoblastoma (RB), in a small RB patient cohort. We aimed to review the supposed imaging biomarker for ON infiltration in a large RB cohort and with respect to the recently described orbital GS. This IRB-approved retrospective single-center study encompassed 539 orbital MRIs performed with an orbital coil and with the children under general anesthesia. Differences of signal intensity ratios (∆SIRs) of the AC to the lens were determined between non-contrast and GBCA-enhanced T1-weighted images and were correlated with histopathologic presence of ON infiltration. ∆SIR of the RB eye was an independent, significant predictor for ON invasion in multivariate analysis with adjustment for tumor size (p < 0.05) and increased with infiltration level. GBCA enhancement of the AC predicts ON infiltration. This might be caused by impairment of the orbital glymphatic system, which is supposed to clear toxic metabolites from the retina to the postlaminar ON. In RB with ON infiltration, this efflux path is likely to be inhibited, which is supposed to result in disturbed retinal homeostasis, release of vascular endothelial growth factor, and iris neovascularization, which increases penetration of GBCA into the AC. • Infiltration of the optic nerve can be predicted by anterior chamber enhancement after intravenous MRI contrast agent administration. • Increased anterior chamber enhancement in retinoblastoma with optic nerve infiltration might result from dysfunction of the orbital glymphatic system with disturbance of retinal homeostasis and consecutive iris neovascularization.
Identifiants
pubmed: 35524782
doi: 10.1007/s00330-022-08778-4
pii: 10.1007/s00330-022-08778-4
pmc: PMC9668776
doi:
Substances chimiques
Contrast Media
0
Vascular Endothelial Growth Factor A
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7354-7364Informations de copyright
© 2022. The Author(s).
Références
Shields C, Shields JA, Baez K, Cater IR, De P (1993) Optic nerve invasion of retinoblastoma metastatic potential and clinical risk factors. Cancer. 73(3):692–698. https://doi.org/10.1002/1097-0142(19940201)73:3<692::AID-CNCR2820730331>3.0.CO;2-8
doi: 10.1002/1097-0142(19940201)73:3<692::AID-CNCR2820730331>3.0.CO;2-8
Messmer EP, Heinrich T, Höpping W, de Sutter E, Havers W, Sauerwein W (1991) Risk factors for metastases in patents with retinoblastoma. Ophthalmology. 98(2):136–141. https://doi.org/10.1016/S0161-6420(91)32325-X
doi: 10.1016/S0161-6420(91)32325-X
MacCarthy A, Birch JM, Draper GJ et al (2009) Retinoblastoma: treatment and survival in Great Britain 1963 to 2002. Br J Ophthalmol. 93(1):38–39. https://doi.org/10.1136/bjo.2008.139626
doi: 10.1136/bjo.2008.139626
Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R (2007) Retinoblastoma: review of current management. Oncologist. 12(10):1237–1246. https://doi.org/10.1634/theoncologist.12-10-1237
doi: 10.1634/theoncologist.12-10-1237
De Graaf P, Barkhof F, Moll AC et al (2005) Retinoblastoma: MR imaging parameters in detection of tumor extent. Radiology. 235(1):197–207. https://doi.org/10.1148/radiol.2351031301
doi: 10.1148/radiol.2351031301
de Graaf P, Moll A, Imhof S, von der Valk M, Castelijns JA (2006) Retinoblastoma and optic nerve enhancement on MRI: not always extraocular tumour extension. Br J Ophthalmol. 90(6):800–801. https://doi.org/10.1136/bjo.2006.092361
doi: 10.1136/bjo.2006.092361
Schueler AO, Hosten N, Bechrakis NE et al (2003) High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol. 87(3):330–335. https://doi.org/10.1136/bjo.87.3.330
doi: 10.1136/bjo.87.3.330
Song KD, Eo H, Kim JH, Yoo SY, Jeon TY (2012) Can preoperative MR imaging predict optic nerve invasion of retinoblastoma? Eur J Radiol. 81(12):4041–4045. https://doi.org/10.1016/j.ejrad.2012.03.034
doi: 10.1016/j.ejrad.2012.03.034
Li Z, Guo J, Xu X, Wang Y, Mukherji SK, Xian J (2020) Diagnosis of postlaminar optic nerve invasion in retinoblastoma with MRI features. J Magn Reson Imaging. 51(4):1045–1052. https://doi.org/10.1002/jmri.26961
doi: 10.1002/jmri.26961
Cui Y, Luo R, Wang R et al (2018) Correlation between conventional MR imaging combined with diffusion-weighted imaging and histopathologic findings in eyes primarily enucleated for advanced retinoblastoma: a retrospective study. Eur Radiol. 28(2):620–629. https://doi.org/10.1007/s00330-017-4993-7
doi: 10.1007/s00330-017-4993-7
Kim U, Rathi G, Chowdhary G, Srinavasan KG, Shanthi R, Krishna RSP (2019) Accuracy of preoperative imaging in predicting optic nerve invasion in retinoblastoma: a retrospective study. Indian J Ophthalmol. 67(12):2019–2022. https://doi.org/10.4103/ijo.IJO_1611_18
doi: 10.4103/ijo.IJO_1611_18
Galluzzi P, Cerase A, Hadjistilianou T et al (2003) Retinoblastoma: abnormal gadolinium enhancement of anterior segment of eyes at MR imaging with clinical and histopathologic correlation. Radiology 228(3):683–690. https://doi.org/10.1148/radiol.2283020466
doi: 10.1148/radiol.2283020466
Wang X, Lou N, Eberhardt A et al (2020) An ocular glymphatic clearance system removes beta-amyloid from the rodent eye. Sci Transl Med. 12:3210–3224. https://doi.org/10.1126/scitranslmed.aaw3210
doi: 10.1126/scitranslmed.aaw3210
Senthil S, Dada T, Das T et al (2021) Neovascular glaucoma-a review. Indian J Ophthalmol. 69(3):525–534. https://doi.org/10.4103/ijo.IJO_1591_20
doi: 10.4103/ijo.IJO_1591_20
Rodrigues GB, Abe RY, Zangalli C et al (2016) Neovascular glaucoma: a review. Int J Retin Vitr 2(1). https://doi.org/10.1186/s40942-016-0051-x
Beutel J, Peters S, Lüke M et al (2010) Bevacizumab as adjuvant for neovascular glaucoma. Acta Ophthalmol. 88(1):103–109. https://doi.org/10.1111/j.1755-3768.2008.01355.x
doi: 10.1111/j.1755-3768.2008.01355.x
Chawla B, Sharma S, Sen S et al (2012) Correlation between clinical features, magnetic resonance imaging, and histopathologic findings in retinoblastoma: a prospective study. Ophthalmology. 119(4):850–856. https://doi.org/10.1016/j.ophtha.2011.09.037
doi: 10.1016/j.ophtha.2011.09.037
Naganawa S, Yamazaki M, Kawai H, Sone M, Nakashima T (2011) Contrast enhancement of the anterior eye segment and subarachnoid space: detection in the normal state by heavily T 2 -weighted 3D FLAIR. Magn Reson Med Sci. 10(3):193–199. https://doi.org/10.2463/mrms.10.193
doi: 10.2463/mrms.10.193
Deike-Hofmann K, Reuter J, Haase R et al (2019) Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Invest Radiol. 54(4):229–237. https://doi.org/10.1097/RLI.0000000000000533
doi: 10.1097/RLI.0000000000000533
Jost G, Frenzel T, Lohrke J, Lenhard DC, Naganawa S, Pietsch H (2017) Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 27(7):2877–2885. https://doi.org/10.1007/s00330-016-4654-2
doi: 10.1007/s00330-016-4654-2
Taoka T, Jost G, Frenzel T, Naganawa S, Pietsch H (2018) Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations. Invest Radiol. 53:529–534. https://doi.org/10.1097/RLI.0000000000000473
doi: 10.1097/RLI.0000000000000473
Deike-Hofmann K, von Lampe P, Schlemmer H et al (2020) The anterior chamber of the eye: an overlooked entry of the natural excretion pathway of gadolinium based contrast agents? Eur Radiol. 30:4633–4640. https://doi.org/10.1007/s00330-020-06762-4
doi: 10.1007/s00330-020-06762-4
Mathieu E, Gupta N, Ahari A, Zhou X, Hanna J, Yücel YH (2017) Evidence for cerebrospinal fluid entry into the optic nerve via a glymphatic pathway. Investig Ophthalmol Vis Sci. 58(11):4784–4791. https://doi.org/10.1167/iovs.17-22290
doi: 10.1167/iovs.17-22290
Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A (2007) Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 130(2):514–520. https://doi.org/10.1093/brain/awl324
doi: 10.1093/brain/awl324
Killer HE (2013) Production and circulation of cerebrospinal fluid with respect to the subarachnoid space of the optic nerve. J Glaucoma 22. https://doi.org/10.1097/IJG.0b013e318293498b
Killer HE, Laeng H, Groscurth P (1999) Lymphatic capillaries in the meninges of the human optic nerve. J Neuroophthalmol. 19(4):222–228
Shields CL, Mashayekhi A, Au AK et al (2006) The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology. 113(12):2276–2280. https://doi.org/10.1016/j.ophtha.2006.06.018
doi: 10.1016/j.ophtha.2006.06.018
Fabian ID, Stacey AW, Chowdhury T et al (2017) High-risk histopathology features in primary and secondary enucleated International Intraocular Retinoblastoma Classification Group D Eyes. Ophthalmology. 124(6):851–858. https://doi.org/10.1016/j.ophtha.2017.01.048
doi: 10.1016/j.ophtha.2017.01.048
Mijnders LS, Steup FW, Lindhout M, Kleij PA van der Brink WM, van der Molen AJ (2020) Optimal sequences and sequence parameters for GBCA-enhanced MRI of the glymphatic system: a systematic literature review. Acta radiol. Published online November 5, 028418512096995. https://doi.org/10.1177/0284185120969950