Tetramethyl-phenanthroline copper complexes in the development of drugs to treat cancer: synthesis, characterization and cytotoxicity studies of a series of copper(II)-L-dipeptide-3,4,7,8-tetramethyl-phenanthroline complexes.
3,4,7,8-tetramethyl-1,10-phenanthroline
Copper complexes
Cytotoxic activity
DNA interaction
Dipeptide
X-ray diffraction
Journal
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
ISSN: 1432-1327
Titre abrégé: J Biol Inorg Chem
Pays: Germany
ID NLM: 9616326
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
31
12
2021
accepted:
31
03
2022
pubmed:
8
5
2022
medline:
26
8
2022
entrez:
7
5
2022
Statut:
ppublish
Résumé
New compounds to fight cancer are needed due to cancer high incidence and lack of curative treatments for several classes of this disease. Metal-based coordination compounds offer a variety of molecules that can turn into drugs. Among them, coordination copper complexes are emerging as an attractive class of compounds for cancer treatment. A series of [Cu(L-dipeptide)(tmp)] (tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline) complexes were synthesized and characterized in the solid state, including the determination of the crystalline structure of [Cu(Gly-Gly)(tmp)]·3.5 H
Identifiants
pubmed: 35524804
doi: 10.1007/s00775-022-01938-3
pii: 10.1007/s00775-022-01938-3
doi:
Substances chimiques
Antineoplastic Agents
0
Coordination Complexes
0
Dipeptides
0
Phenanthrolines
0
Copper
789U1901C5
DNA
9007-49-2
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
431-441Subventions
Organisme : Comisión Sectorial de Investigación Científica
ID : I+D grant to G.F.
Informations de copyright
© 2022. The Author(s), under exclusive licence to Society for Biological Inorganic Chemistry (SBIC).
Références
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424
doi: 10.3322/caac.21492
pubmed: 30207593
Casini A, Vessières A, Meier-Menches SM (2019) Metal-based anticancer agents. Royal Society of Chemistry, Cambridge
doi: 10.1039/9781788016452
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862
pubmed: 24102434
doi: 10.1021/cr400135x
McGivern TJP, Afsharpour S, Marmion CJ (2018) Copper complexes as artificial DNA metallonucleases: from Sigman’s reagent to next generation anti-cancer agent? Inorg Chim Acta 472:12–39
Mahalakshmi R, Raman N (2016) A therapeutic journey of mixed ligand complexes containing 1,10-phenanthroline derivatives: a review. Chemistry 16:18
doi: 10.14529/chem160403
Mejía C, Ortega-Rosales S, Ruiz-Azuara L (2018) Mechanism of action of anticancer metallodrugs, biomedical applications of metals. Springer, Berlin, pp 213–234
doi: 10.1007/978-3-319-74814-6_10
Kellett A, Molphy Z, McKee V, Slator C (2019) Recent advances in anticancer copper compounds. In: Casini A, Vessieres A, Meier-Menches SM (eds) Metal-based anticancer agents. Metallobiology, vol 14. RSC, pp 91–119
Shi X, Chen Z, Wang Y, Guo Z, Wang X (2018) Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalton Trans 47:5049–5054
pubmed: 29561011
doi: 10.1039/C8DT00794B
Qin X-Y, Wang Y-N, Yang X-P, Liang J-J, Liu J-L, Luo Z-H (2017) Synthesis, characterization, and anticancer activity of two mixed ligand copper(II) complexes by regulating the VEGF/VEGFR2 signaling pathway. Dalton Trans 46:16446–16454
pubmed: 29143014
doi: 10.1039/C7DT03242K
Laws K, Bineva-Todd G, Eskandari A, Lu C, O’Reilly N, Suntharalingam K (2018) A copper(II) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew Chem 130:293–297
doi: 10.1002/ange.201710910
Laws K, Suntharalingam K (2018) The next generation of anticancer metallopharmaceuticals: cancer stem cell-active inorganics. ChemBioChem 19:2246–2253
pubmed: 30109911
doi: 10.1002/cbic.201800358
Serment-Guerrero J, Bravo-Gomez ME, Lara-Rivera E, Ruiz-Azuara L (2017) Genotoxic assessment of the copper chelated compounds Casiopeinas: clues about their mechanisms of action. J Inorg Biochem 166:68–75
pubmed: 27838580
doi: 10.1016/j.jinorgbio.2016.11.007
Marzano C, Tisato F, Porchia M, Pellei M, Gandin V (2019) Phosphine copper(I) complexes as anticancer agents: biological characterization. Part II, copper(I) chemistry of phosphines, functionalized phosphines and phosphorus heterocycles. Elsevier, Amsterdam, pp 83–107
doi: 10.1016/B978-0-12-815052-8.00004-X
Nunes P, Yildizhan Y, Adiguzel Z, Marques F, Costa Pessoa J, Acilan C, Correia I (2021) Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem. https://doi.org/10.1007/s00775-021-01913-4
doi: 10.1007/s00775-021-01913-4
pubmed: 34817681
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchio L (2011) Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc 133:6235–6242
pubmed: 21452832
doi: 10.1021/ja109413c
Gaál A, Mihucz VG, Bősze S, Szabó I, Baranyi M, Horváth P, Streli C, Szoboszlai N (2018) Comparative in vitro investigation of anticancer copper chelating agents. Microchem J 136:227–235
doi: 10.1016/j.microc.2016.12.007
Shi X, Fang H, Guo Y, Yuan H, Guo Z, Wang X (2019) Anticancer copper complex with nucleus, mitochondrion and cyclooxygenase-2 as multiple targets. J Inorg Biochem 190:38–44
pubmed: 30352314
doi: 10.1016/j.jinorgbio.2018.10.003
Nagababu P, Barui AK, Thulasiram B, Devi CS, Satyanarayana S, Patra CR, Sreedhar B (2015) Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers. J Med Chem 58:5226–5241
pubmed: 26068145
doi: 10.1021/acs.jmedchem.5b00651
Facchin G, Torre MH, Kremer E, Piro OE, Castellano EE, Baran EJ (2000) Structural and spectroscopic characterization of two new Cu(II)-dipeptide complexes. Z Naturforsch B 55:1157–1162
doi: 10.1515/znb-2000-1209
Facchin G, Torre MAH, Kremer E, Piro OE, Castellano EE, Baran EJ (2002) Synthesis and characterization of three new Cu(II)-dipeptide complexes. J Inorg Biochem 89:174–180
pubmed: 12062120
doi: 10.1016/S0162-0134(02)00367-7
Facchin G, Torre M, Kremer E, Baran E, Mombrú A, Pardo H, Araujo M, Batista A, Costa-Filho A (2003) Cu(II) complexation with His-Gly and His-Ala. X-ray structure of [Cu(his–gly)
doi: 10.1016/S0020-1693(03)00295-0
Vieira ED, Casado NM, Facchin G, Torre MH, Costa-Filho AJ, Calvo R (2006) Weak exchange interaction supported by a biologically relevant long chemical bridge in a Cu-peptide model compound. Inorg Chem 45:2942–2947
pubmed: 16562949
doi: 10.1021/ic051957b
Facchin G, Kremer E, Baran EJ, Castellano EE, Piro OE, Ellena J, Costa-Filho AJ, Torre MH (2006) Structural characterization of a series of new Cu-dipeptide complexes in solid state and in solution. Polyhedron 25:2597–2604
doi: 10.1016/j.poly.2006.03.012
Sanchiz J, Kremer C, Torre M, Facchin G, Kremer E, Castellano EE, Ellena J (2006) Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)]. J Mol Struct 797:179–183
doi: 10.1016/j.molstruc.2006.03.058
Facchin G, Kremer E, Barrio DA, Etcheverry SB, Costa-Filho AJ, Torre MH (2009) Interaction of Cu-dipeptide complexes with Calf Thymus DNA and antiproliferative activity of [Cu(ala-phe)] in osteosarcoma-derived cells. Polyhedron 28:2329–2334
doi: 10.1016/j.poly.2009.04.029
Iglesias S, Noble C, González R, Torre MH, Kremer E, Kramer G, Facchin G (2013) Towards the development of new copper compounds for the treatment of cancer: study of the cytotoxic activity of Cu(L-dipeptide)(1,10-phenanthroline) complexes. In: Proceedings—12th international symposium of metal ions in biology and medicine, p 1
Iglesias S, Alvarez N, Torre MH, Kremer E, Ellena J, Ribeiro RR, Barroso RP, Costa-Filho AJ, Kramer MG, Facchin G (2014) Synthesis, structural characterization and cytotoxic activity of ternary copper(II)–dipeptide–phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer. J Inorg Biochem 139:117–123
pubmed: 25033418
doi: 10.1016/j.jinorgbio.2014.06.007
Iglesias S, Alvarez N, Kramer G, Torre MH, Kremer E, Ellena J, Costa-Filho AJ, Facchin G (2015) Structural characterization and cytotoxic activity of heteroleptic copper(II) complexes with L-dipeptides and 5-NO
Facchin G, Veiga N, Kramer MG, Batista AA, Várnagy K, Farkas E, Moreno V, Torre MH (2016) Experimental and theoretical studies of copper complexes with isomeric dipeptides as novel candidates against breast cancer. J Inorg Biochem 162:52–61
pubmed: 27369466
doi: 10.1016/j.jinorgbio.2016.06.005
Alvarez N, Noble C, Torre MH, Kremer E, Ellena J, de Araujo MP, Costa-Filho AJ, Mendes LF, Kramer MG, Facchin G (2017) Synthesis, structural characterization and cytotoxic activity against tumor cells of heteroleptic copper(I) complexes with aromatic diimines and phosphines. Inorg Chim Acta 466:559–564
doi: 10.1016/j.ica.2017.06.050
Lim M, Sinn E, Martin RB (1976) Crystal structure of a mixed-ligand complex of copper(II), 1,10-phenanthroline, and glycylglycine dianion: glycylglycinato (1,10-phenanthroline) copper(II) trihydrate. Inorg Chem 15:807–811
doi: 10.1021/ic50158a014
Sugimori T, Shibakawa K, Masuda H, Odani A, Yamauchi O (1993) Ternary metal(II) complexes with tyrosine-containing dipeptides. Structures of copper(II) and palladium(II) complexes involving L-tyrosylglycine and stabilization of copper(II) complexes due to intramolecular aromatic ring stacking. Inorg Chem 32:4951–4959
doi: 10.1021/ic00074a047
Bhirud RG, Srivastava TS (1991) Synthesis, characterization and superoxide dismutase activity of some ternary copper(II) dipeptide-2, 2′-bipyridine, 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline complexes. Inorg Chim Acta 179:125–131
doi: 10.1016/S0020-1693(00)85383-9
Deshpande S, Srivastava T (1983) Preparation and spectral studies of some ternary 2,2′-bipyridine and 1,10-phenanthroline copper(II) dipeptide complexes. Inorg Chim Acta 78:75–80
doi: 10.1016/S0020-1693(00)86492-0
García-Raso A, Fiol JJ, Adrover B, Moreno V, Mata I, Espinosa E, Molins E (2003) Synthesis, structure and nuclease properties of several ternary copper(II) peptide complexes with 1,10-phenanthroline. J Inorg Biochem 95:77
pubmed: 12763651
doi: 10.1016/S0162-0134(03)00121-1
Alvarez N, Viña D, Leite CM, Mendes LF, Batista AA, Ellena J, Costa-Filho AJ, Facchin G (2020) Synthesis and structural characterization of a series of ternary copper(II)-L-dipeptide-neocuproine complexes Study of their cytotoxicity against cancer cells including MDA-MB-231, triple negative breast cancer cells. J Inorg Biochem 203:110930
pubmed: 31812025
doi: 10.1016/j.jinorgbio.2019.110930
Robin P, Singh K, Suntharalingam K (2020) Gallium(III)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chem Commun 56:1509–1512. https://doi.org/10.1039/C9CC08962D
Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55
pubmed: 16188474
doi: 10.1016/j.jmr.2005.08.013
Bruker (2012) APEX 3. Bruker AXS Inc., Madison
Sheldrick GM (2014) SHELXT: integrating space group determination and structure solution. Acta Crystallogr Sect A Found Adv 70:C1437
doi: 10.1107/S2053273314085623
Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8
doi: 10.1107/S2053229614024218
Hübschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44:1281–1284
pubmed: 22477785
pmcid: 3246833
doi: 10.1107/S0021889811043202
Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457
doi: 10.1107/S002188980600731X
Allen FH, Johnson O, Shields GP, Smith BR, Towler M (2004) CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J Appl Crystallogr 37:335–338
doi: 10.1107/S0021889804003528
Jiang J-S, Brünger AT (1994) Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol 243:100–115
pubmed: 7932732
doi: 10.1006/jmbi.1994.1633
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341
doi: 10.1107/S0021889808042726
Eadsforth CV, Moser P (1983) Assessment of reverse-phase chromatographic methods for determining partition coefficients. Chemosphere 12:1459–1475
doi: 10.1016/0045-6535(83)90076-0
Sirajuddin M, Ali S, Badshah A (2013) DRUG-DNA Interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B Biol 124:1–19
doi: 10.1016/j.jphotobiol.2013.03.013
Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707
doi: 10.1021/ja01176a030
Schmechel DEV, Crothers DM (1971) Kinetic and hydrodynamic studies of the complex of proflavine with poly A·poly U. Biopolymers 10:465–480
pubmed: 5552655
doi: 10.1002/bip.360100304
Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396
pubmed: 3427013
doi: 10.1021/bi00394a013
Jenkins TC (1997) Optical absorbance and fluorescence techniques for measuring DNA–drug interactions. In: Fox KR (ed) Drug–DNA interaction protocols. Humana Press, Totowa, pp 195–218
doi: 10.1385/0-89603-447-X:195
Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV–visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 124:1–19
pubmed: 23648795
doi: 10.1016/j.jphotobiol.2013.03.013
Viossat B, Gaucher JF, Mazurier A, Selkti M, Tomas A (1998) Crystal structure of bis(μ-chloro)bis[chloro-(o-phenanthroline-N,N′)-coppeг(II)], Cu
doi: 10.1524/ncrs.1998.213.14.343
Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. Wiley-Interscience, Hoboken
Yuan C-Q, Peng Z-H, Pan Q-C, Li D-C, Shen Y-F (2006) Spectroscopic and theoretical studies on copper(II) complex of maleonitriledithiolate and 5-nitro-1,10-phenanthroline. J Mol Struct 789:52–58
doi: 10.1016/j.molstruc.2005.12.016
Cotton FA, Wilkinson G, Murillo CA, Bochmann M, Grimes R (1999) Advanced inorganic chemistry. Wiley, New York
Hathaway B, Billing D (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207
doi: 10.1016/S0010-8545(00)80135-6
Billo E (1974) Copper(II) chromosomes and the rule of average environment. Inorg Nucl Chem Lett 10:613–617
doi: 10.1016/0020-1650(74)80002-4
Sigel H, Martin RB (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82:385–426
doi: 10.1021/cr00050a003
Prenesti E, Daniele P, Prencipe M, Ostacoli G (1999) Spectrum–structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution. Polyhedron 18:3233–3241
doi: 10.1016/S0277-5387(99)00279-X
Prenesti E, Daniele PG, Berto S, Toso S (2006) Spectrum–structure correlation for visible absorption spectra of copper(II) complexes showing axial co-ordination in aqueous solution. Polyhedron 25:2815–2823
doi: 10.1016/j.poly.2006.04.026
Peisach J, Blumberg WE (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys 165:691–708
pubmed: 4374138
doi: 10.1016/0003-9861(74)90298-7
Tabbì G, Giuffrida A, Bonomo RP (2013) Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV–Vis spectral features. J Inorg Biochem 128:137–145
pubmed: 23988848
doi: 10.1016/j.jinorgbio.2013.07.035
Islam MM, Chakraborty M, Pandya P, Al Masum A, Gupta N, Mukhopadhyay S (2013) Binding of DNA with Rhodamine B: spectroscopic and molecular modeling studies. Dyes Pigm 99:412–422
doi: 10.1016/j.dyepig.2013.05.028
Dickerson RE (1992) [5] DNA structure from A to Z, methods enzymol. Elsevier, Amsterdam, pp 67–111
Bravo-Gómez ME, Dávila-Manzanilla S, Flood-Garibay J, Muciño-Hernández MÁ, Mendoza Á, García-Ramos JC, Moreno-Esparza R, Ruiz-Azuara L (2012) Secondary ligand effects on the cytotoxicity of several Casiopeína’s group II compounds. J Mex Chem Soc 56:85–92
Loganathan R, Ramakrishnan S, Ganeshpandian M, Bhuvanesh NSP, Palaniandavar M, Riyasdeen A, Akbarsha MA (2015) Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity. Dalton Trans 44:10210–10227
pubmed: 25954774
doi: 10.1039/C4DT03879G
Sharma M, Ganeshpandian M, Majumder M, Tamilarasan A, Sharma M, Mukhopadhyay R, Islam NS, Palaniandavar M (2020) Octahedral copper(II)-diimine complexes of triethylenetetramine: effect of stereochemical fluxionality and ligand hydrophobicity on Cu II/Cu I redox, DNA binding and cleavage, cytotoxicity and apoptosis-inducing ability. Dalton Trans 49:8282–8297
pubmed: 32510543
doi: 10.1039/D0DT00928H
Mohammadizadeh F, Falahati-Pour SK, Rezaei A, Mohamadi M, Hajizadeh MR, Mirzaei MR, Khoshdel A, Fahmidehkar MA, Mahmoodi M (2018) The cytotoxicity effects of a novel Cu complex on MCF-7 human breast cancerous cells. Biometals 31:233–242
pubmed: 29429042
doi: 10.1007/s10534-018-0079-5
Hammud HH, McManus GJ, Zaworotko MJ, Tabesh RN, Ibrahim HIM, Ayub K, Ludwig R (2021) The co-crystal of copper(II) phenanthroline chloride complex hydrate with p-aminobenzoic acid: structure, cytotoxicity, thermal analysis, and DFT calculation. Monatshefte für Chemie Chem Mon 152:323–336
Peña Q, Sciortino G, Maréchal J-D, Bertaina S, Simaan AJ, Lorenzo J, Capdevila M, Bayón P, Iranzo O, Palacios Ò (2021) Copper(II) N,N,O-chelating complexes as potential anticancer agents. Inorg Chem 60:2939–2952
Jopp M, Becker J, Becker S, Miska A, Gandin V, Marzano C, Schindler S (2017) Anticancer activity of a series of copper(II) complexes with tripodal ligands. Eur J Med Chem 132:274–281
pubmed: 28371639
doi: 10.1016/j.ejmech.2017.03.019
Pellei M, Gandin V, Marchiò L, Marzano C, Bagnarelli L, Santini C (2019) Syntheses and biological studies of Cu(II) complexes bearing bis(pyrazol-1-yl)-and bis(triazol-1-yl)-acetato heteroscorpionate ligands. Molecules 24:1761
pmcid: 6539868
doi: 10.3390/molecules24091761
Walther W, Fichtner I, Hackenberg F, Streciwilk W, Tacke M (2014) In vitro and in vivo investigations into the carbene copper bromide anticancer drug candidate WBC4. Lett Drug Des Discov 11:825–832
doi: 10.2174/1570180811666140529004102
Dwyer F, Mayhew E, Roe E, Shulman A (1965) Inhibition of landschuetz ascites tumour growth by metal chelates derived from 3,4,7,8-tetramethyl-1,10-phenanthroline. Br J Cancer 19:195
pubmed: 14284381
pmcid: 2071418
doi: 10.1038/bjc.1965.24
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MM, Azevedo CG, Capelo J-L, Santos HM, Gama S, Pinheiro T (2020) Copper complexes with 1,10-phenanthroline derivatives: underlying factors affecting their cytotoxicity. Inorg Chem 59:9116–9134
pubmed: 32578983
doi: 10.1021/acs.inorgchem.0c00925
Zheng P, Eskandari A, Lu C, Laws K, Aldous L, Suntharalingam K (2019) Biophysical analysis of cancer stem cell-potent copper(II) coordination complexes. Dalton Trans 48:5892–5896
pubmed: 30632590
doi: 10.1039/C8DT04706E
Pinho JO, Amaral JD, Castro RE, Rodrigues CM, Casini A, Soveral G, Gaspar MM (2019) Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine 14:835–850
pubmed: 30875274
doi: 10.2217/nnm-2018-0388
Han B-J, Jiang G-B, Wang J, Li W, Huang H-L, Liu Y-J (2014) The studies on bioactivity in vitro of ruthenium(II) polypyridyl complexes towards human lung carcinoma A549 cells. RSC Adv 4:40899–40906
doi: 10.1039/C4RA07102F