Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
31 Oct 2019
31 Oct 2019
Historique:
received:
07
08
2019
accepted:
18
09
2019
entrez:
9
5
2022
pubmed:
1
11
2019
medline:
1
11
2019
Statut:
epublish
Résumé
Protean mesoporous silica nanoparticles (MSNs) are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including (but not limited to) changeable pore size, mesoporosity, high drug loading capacity, and biodegradability. MSNs have been drawing considerable attention as competent, safer and effective drug delivery vehicles day by day by their towering mechanical, chemical and thermal characteristics. Straightforward and easy steps are involved in the synthesis of MSNs at a relatively cheaper cost. This review reports Stober's synthesis, the first proposed synthesis procedure to prepare micron-sized, spherical MSNs, followed by other modifications later on done by scientists. To ensure the safety and compatibility of MSNs with biological systems, the hemocompatibility evaluation of MSNs using human red blood cells (RBCs) is a widely welcomed exercise. Though our main vision of this overview is to emphasize more on the hemocompatibility of MSNs to RBCs, we also brief about the synthesis and widespread applications of multifaceted MSNs. The strike of different parameters of MSNs plays a crucial role concerning the hemolytic activity of MSNs, which also has been discussed here. The inference is derived by centering some feasible measures that can be adopted to cut down or stop the hemolytic activity of MSNs in the future.
Identifiants
pubmed: 35528069
doi: 10.1039/c9ra06127d
pii: c9ra06127d
pmc: PMC9074774
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
35566-35578Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
The authors declare no conflicts of interest.
Références
Scientifica (Cairo). 2013;2013:392584
pubmed: 24278774
Acta Biomater. 2013 Dec;9(12):9568-77
pubmed: 23973390
Colloids Surf B Biointerfaces. 2016 Aug 1;144:293-302
pubmed: 27107383
Platelets. 2017 Jul;28(5):441-448
pubmed: 28358995
Langmuir. 2004 Feb 3;20(3):680-8
pubmed: 15773092
Pharmaceutics. 2018 Aug 06;10(3):
pubmed: 30082647
Biotechnol Prog. 2007 May-Jun;23(3):749-54
pubmed: 17469847
J Am Chem Soc. 2010 Apr 7;132(13):4834-42
pubmed: 20230032
J Funct Biomater. 2012 Apr 17;3(2):283-97
pubmed: 24955532
Nano Lett. 2008 May;8(5):1517-26
pubmed: 18376867
J Mater Sci Mater Med. 2015 Mar;26(3):125
pubmed: 25690616
J Mater Sci Mater Med. 2017 Aug;28(8):127
pubmed: 28721663
Small. 2010 Sep 20;6(18):1952-67
pubmed: 20690133
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70
pubmed: 18809927
Regen Biomater. 2015 Sep;2(3):167-75
pubmed: 26816640
J Biomed Mater Res A. 2007 Jun 1;81(3):644-51
pubmed: 17187399
J Thromb Haemost. 2003 Dec;1(12):2561-8
pubmed: 14738565
Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27
pubmed: 26667886
ACS Nano. 2011 Jul 26;5(7):5717-28
pubmed: 21630682
Acc Chem Res. 2013 Mar 19;46(3):792-801
pubmed: 23387478
Am J Kidney Dis. 2010 Oct;56(4):780-4
pubmed: 20605299
PLoS One. 2013 Nov 13;8(11):e78732
pubmed: 24236042
J Thromb Haemost. 2014;12(3):373-82
pubmed: 24345079
Platelets. 2012;23(3):229-42
pubmed: 22502645
J Tissue Eng. 2013 Sep 03;4:2041731413503357
pubmed: 24020012
Front Bioeng Biotechnol. 2018 Jul 16;6:99
pubmed: 30062094
ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1675-81
pubmed: 24417657
Langmuir. 2012 Mar 6;28(9):4425-33
pubmed: 22044300
Nanoscale Res Lett. 2016 Dec;11(1):57
pubmed: 26831695
Langmuir. 2015 Jul 14;31(27):7623-32
pubmed: 26090923
Chem Soc Rev. 2013 May 7;42(9):4071-82
pubmed: 23258529
Biointerphases. 2016 Jun 12;11(2):029802
pubmed: 26872581
Langmuir. 2015 Aug 4;31(30):8478-87
pubmed: 26158700
Biomed Microdevices. 2010 Dec;12(6):987-1000
pubmed: 20652753
ACS Nano. 2011 May 24;5(5):3568-76
pubmed: 21452883
ACS Nano. 2011 Feb 22;5(2):1366-75
pubmed: 21294526
ACS Nano. 2008 May;2(5):889-96
pubmed: 19206485
Anal Chim Acta. 2016 Jan 1;902:196-204
pubmed: 26703271
J Biomed Mater Res. 1993 Sep;27(9):1181-93
pubmed: 8126017
Expert Opin Drug Deliv. 2009 Dec;6(12):1383-400
pubmed: 19941412
Chem Commun (Camb). 2011 Jan 7;47(1):532-4
pubmed: 21082109
Methods Mol Biol. 2011;697:215-24
pubmed: 21116971
J Biomed Mater Res B Appl Biomater. 2003 Jul 15;66(1):379-90
pubmed: 12808598
Acta Biomater. 2013 Jul;9(7):7460-8
pubmed: 23523936
Nanotechnology. 2011 Nov 11;22(45):455102
pubmed: 22019849
Eur J Pharm Sci. 2010 Oct 9;41(2):360-8
pubmed: 20633644
J Clin Pathol. 1976 Sep;29(9):855-8
pubmed: 977787
Chem Commun (Camb). 2007 Aug 21;(31):3236-45
pubmed: 17668088
Chem Res Toxicol. 2012 Nov 19;25(11):2265-84
pubmed: 22823891
Biorheology. 2015;52(5-6):303-18
pubmed: 26600269
ACS Nano. 2011 Jan 25;5(1):360-6
pubmed: 21162552
Nanoscale. 2017 Feb 16;9(7):2464-2470
pubmed: 27824195
Nature. 2007 May 24;447(7143):461-4
pubmed: 17522680
J Biomed Mater Res A. 2014 Dec;102(12):4195-205
pubmed: 24443272
Langmuir. 2004 May 11;20(10):3882-7
pubmed: 15969374
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1278-1288
pubmed: 18514969
Sci Technol Adv Mater. 2013 Jul 23;14(4):045005
pubmed: 27877598
Nano Lett. 2008 Mar;8(3):941-4
pubmed: 18254602
Nanomedicine. 2017 Nov;13(8):2633-2642
pubmed: 28757180
Molecules. 2019 Jan 17;24(2):
pubmed: 30658511
Angew Chem Int Ed Engl. 2007;46(30):5754-6
pubmed: 17591736
Small. 2009 Jan;5(1):57-62
pubmed: 19051185
Toxicol Appl Pharmacol. 2013 Nov 1;272(3):703-12
pubmed: 23933530
Int J Biomater. 2012;2012:673163
pubmed: 22649450
J Vis Exp. 2014 Nov 21;(93):e52112
pubmed: 25489671
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:422-8
pubmed: 25063137