Edaravone Dexborneol Treatment Attenuates Neuronal Apoptosis and Improves Neurological Function by Suppressing 4-HNE-Associated Oxidative Stress After Subarachnoid Hemorrhage.
4-HNE
edaravone
edaravone dexborneol
oxidative stress
subarachnoid hemorrhage
Journal
Frontiers in pharmacology
ISSN: 1663-9812
Titre abrégé: Front Pharmacol
Pays: Switzerland
ID NLM: 101548923
Informations de publication
Date de publication:
2022
2022
Historique:
received:
04
01
2022
accepted:
11
03
2022
entrez:
9
5
2022
pubmed:
10
5
2022
medline:
10
5
2022
Statut:
epublish
Résumé
Edaravone dexborneol is a novel neuroprotective drug that comprises edaravone and (+)-borneol in a 4:1 ratio. Phase II and III studies have demonstrated that Chinese patients treated with edaravone dexborneol within 48 h of AIS onset have better functional outcomes than those treated with edaravone alone. However, the effect of edaravone dexborneol on subarachnoid hemorrhage (SAH) has not yet been elucidated. This study aimed to investigate the therapeutic effects of edaravone dexborneol on SAH-induced brain injury and long-term behavioral deficits and to explore the possible mechanisms. The experimental rat SAH model was induced by an intraluminal puncture of the left middle cerebral artery (MCA). Edaravone dexborneol or edaravone at a clinical dose was infused into the tail vein for 3 days post-SAH surgery. Behavioral outcomes were assessed by a modified Garcia scoring system and rotarod, foot-fault, and corner tests. Immunofluorescence, Western blot, and ELISA methods were used to evaluate neuronal damage and oxidative stress. Our results showed that a post-SAH therapeutic regimen with edaravone dexborneol helped improve neurological function up to 21 days after SAH surgery and demonstrated a greater beneficial effect than edaravone alone, accompanied by an obvious inhibition of neuronal apoptosis in the CA1 hippocampus and basal cortex regions. Mechanistically, edaravone dexborneol not only suppressed the lipid peroxidation product malondialdehyde (MDA) but also improved the total antioxidant capability (TAC) 3 days after SAH. Notably, edaravone dexborneol treatment significantly inhibited the expression of another lipid peroxidation product, 4-hydroxynonenal (4-HNE), in the CA1 hippocampus and basal cortex, which are vital participants in the process of neuronal oxidative damage and death after SAH because of their acute cytotoxicity. Together, our results demonstrate that edaravone dexborneol confers neuroprotection and stabilizes long-term behavioral ability after SAH injury, possibly by suppressing 4-HNE-associated oxidative stress. These results may help develop new clinical strategies for SAH treatment.
Identifiants
pubmed: 35529450
doi: 10.3389/fphar.2022.848529
pii: 848529
pmc: PMC9068884
doi:
Types de publication
Journal Article
Langues
eng
Pagination
848529Informations de copyright
Copyright © 2022 Chen, Cai, Zhu, Wang, Gao, Yang, Mao, Zhang and Sun.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Stroke Vasc Neurol. 2019 Apr 22;4(3):109-114
pubmed: 31709115
Int J Mol Sci. 2013 Jul 04;14(7):13909-30
pubmed: 23880849
Curr Drug Deliv. 2017 Sep 6;14(6):832-842
pubmed: 27784210
Transl Stroke Res. 2020 Aug;11(4):799-811
pubmed: 31833035
Transl Stroke Res. 2019 Dec;10(6):684-694
pubmed: 30628008
J Neurosci Methods. 2008 Jan 30;167(2):327-34
pubmed: 17870179
Front Cell Neurosci. 2021 Sep 24;15:739506
pubmed: 34630043
Lancet. 2007 Jan 27;369(9558):306-18
pubmed: 17258671
Prog Neurobiol. 2012 Apr;97(1):14-37
pubmed: 22414893
Front Pharmacol. 2021 May 04;12:606682
pubmed: 34017247
Lancet. 2017 Feb 11;389(10069):655-666
pubmed: 27637674
CNS Neurosci Ther. 2021 Jan;27(1):113-122
pubmed: 33369165
Redox Biol. 2019 Jan;20:75-86
pubmed: 30296700
Oxid Med Cell Longev. 2019 Aug 14;2019:3085756
pubmed: 31485289
Anat Rec (Hoboken). 2016 Aug;299(8):1145-52
pubmed: 27164408
ACS Chem Neurosci. 2021 Feb 3;12(3):430-440
pubmed: 33476129
Curr Neurovasc Res. 2010 Nov;7(4):319-29
pubmed: 20854248
Oxid Med Cell Longev. 2014;2014:360438
pubmed: 24999379
Neurochem Res. 2010 Feb;35(2):348-55
pubmed: 19768539
Am J Physiol Cell Physiol. 2016 Oct 1;311(4):C537-C543
pubmed: 27385721
Molecules. 2020 Apr 21;25(8):
pubmed: 32326289
Anal Biochem. 2017 May 1;524:13-30
pubmed: 27789233
Int J Stroke. 2014 Jan;9(1):101-6
pubmed: 24148907
Front Physiol. 2020 Jan 15;10:1596
pubmed: 32009986
CNS Neurosci Ther. 2021 Jan;27(1):82-91
pubmed: 33280237
Chem Res Toxicol. 2009 May;22(5):835-41
pubmed: 19388687
Front Neurosci. 2020 Jan 21;13:1441
pubmed: 32038143
Acta Neurochir Suppl. 2008;104:33-41
pubmed: 18456995
Front Pharmacol. 2021 Jan 21;11:624529
pubmed: 33584308
Neurol Res Int. 2013;2013:972417
pubmed: 23878735
Front Pharmacol. 2020 May 15;11:712
pubmed: 32499702
Acta Neurochir Suppl. 2011;110(Pt 2):17-22
pubmed: 21125439
Neurosurgery. 2009 Mar;64(3):423-8; discussion 428-9
pubmed: 19240603
Eur J Pharmacol. 2014 Oct 5;740:522-31
pubmed: 24975100
Free Radic Res. 2013 Aug;47 Suppl 1:3-27
pubmed: 23767955
Stroke. 2021 Mar;52(3):772-780
pubmed: 33588596
Front Pharmacol. 2021 Feb 03;11:610734
pubmed: 33732145