Segregation-free bromine-doped perovskite solar cells for IoT applications.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
10 Oct 2019
10 Oct 2019
Historique:
received:
12
07
2019
accepted:
10
10
2019
entrez:
9
5
2022
pubmed:
15
10
2019
medline:
15
10
2019
Statut:
epublish
Résumé
Perovskite solar cells have attracted much attention as next-generation solar cells because of their high efficiency and low fabrication costs. Moreover, perovskite solar cells are a promising candidate for indoor energy harvesting. We investigated the effect of bandgap tuning on the characteristics of triple cation-based perovskite solar cells under fluorescent lamp illumination. According to the current density-voltage curves, perovskite solar cells with a wider bandgap than the conventional one exhibited improved open-circuit voltage without sacrificing short-circuit current density under fluorescent lamp illumination. Moreover, the wider bandgap perovskite films including a large amount of bromine in the composition did not show phase segregation, which can degrade the photovoltaic performance of perovskite solar cells, after fluorescent lamp illumination. Our results demonstrate the facile strategy to improve the performance of perovskite solar cells under ambient lighting and great potential of perovskite solar cells for indoor applications such as power sources for the internet of things.
Identifiants
pubmed: 35529752
doi: 10.1039/c9ra05323a
pii: c9ra05323a
pmc: PMC9073202
doi:
Types de publication
Journal Article
Langues
eng
Pagination
32833-32838Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
J Am Chem Soc. 2015 Feb 25;137(7):2674-9
pubmed: 25650811
Chem Sci. 2015 Jan 1;6(1):613-617
pubmed: 28706629
ACS Appl Mater Interfaces. 2017 Aug 16;9(32):26859-26866
pubmed: 28738159
J Phys Chem Lett. 2014 Aug 7;5(15):2501-5
pubmed: 26277936
Science. 2012 Nov 2;338(6107):643-7
pubmed: 23042296
Nature. 2015 Jan 22;517(7535):476-80
pubmed: 25561177
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997
pubmed: 27478500
Science. 2014 Aug 1;345(6196):542-6
pubmed: 25082698
Sci Rep. 2017 Apr 06;7:46193
pubmed: 28383061
Science. 2015 Jun 12;348(6240):1234-7
pubmed: 25999372
J Am Chem Soc. 2015 Jul 15;137(27):8696-9
pubmed: 26125203
J Phys Chem Lett. 2017 Oct 5;8(19):4960-4966
pubmed: 28944675
Nat Mater. 2014 Sep;13(9):897-903
pubmed: 24997740
Science. 2017 Jun 30;356(6345):1376-1379
pubmed: 28663498
Nat Commun. 2016 Jan 06;7:10228
pubmed: 26732479
Nature. 2013 Sep 19;501(7467):395-8
pubmed: 24025775
Nano Converg. 2017;4(1):26
pubmed: 28989856
J Phys Chem Lett. 2015 Jun 18;6(12):2292-7
pubmed: 26266607
Science. 2016 Jan 8;351(6269):151-5
pubmed: 26744401
Nature. 2013 Jul 18;499(7458):316-9
pubmed: 23842493
Adv Mater. 2014 Oct;26(38):6647-52
pubmed: 25178565
J Am Chem Soc. 2009 May 6;131(17):6050-1
pubmed: 19366264
Sci Rep. 2017 Sep 22;7(1):12183
pubmed: 28939887
RSC Adv. 2018 Apr 16;8(25):14025-14030
pubmed: 35539305
Adv Mater. 2018 Aug;30(35):e1801418
pubmed: 29995330
Angew Chem Int Ed Engl. 2014 Sep 8;53(37):9898-903
pubmed: 25047967
ACS Appl Mater Interfaces. 2016 Nov 2;8(43):29419-29426
pubmed: 27731622
J Phys Chem Lett. 2017 Sep 7;8(17):4300-4307
pubmed: 28840727
J Phys Chem Lett. 2018 Apr 5;9(7):1682-1688
pubmed: 29536736
Adv Mater. 2017 Jul;29(28):
pubmed: 28524262
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2224-2229
pubmed: 29299921