Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases.
genetic variation
genomics
nanopore sequencing
Journal
Journal of medical genetics
ISSN: 1468-6244
Titre abrégé: J Med Genet
Pays: England
ID NLM: 2985087R
Informations de publication
Date de publication:
09 May 2022
09 May 2022
Historique:
received:
05
02
2022
accepted:
14
04
2022
entrez:
9
5
2022
pubmed:
10
5
2022
medline:
10
5
2022
Statut:
aheadofprint
Résumé
Werner syndrome (WS) is an autosomal recessive progeroid syndrome caused by variants in Targeted long-read sequencing (T-LRS) on an Oxford Nanopore platform was used to search for a second pathogenic variant in We identified a second pathogenic variant in eight of nine unsolved WS cases. In five cases, T-LRS identified intronic splice variants that were confirmed by either RT-PCR or exon trapping to affect splicing; in one case, T-LRS identified a 339 kbp deletion, and in two cases, pathogenic missense variants. Phasing of long reads predicted all newly identified variants were on a different haplotype than the previously known variant. Finally, in one case, RT-PCR previously identified skipping of exon 20; however, T-LRS did not detect a pathogenic DNA sequence variant. T-LRS is an effective method for identifying missing pathogenic variants. Although limitations with computational prediction algorithms can hinder the interpretation of variants, T-LRS is particularly effective in identifying intronic variants.
Sections du résumé
BACKGROUND
BACKGROUND
Werner syndrome (WS) is an autosomal recessive progeroid syndrome caused by variants in
METHODS
METHODS
Targeted long-read sequencing (T-LRS) on an Oxford Nanopore platform was used to search for a second pathogenic variant in
RESULTS
RESULTS
We identified a second pathogenic variant in eight of nine unsolved WS cases. In five cases, T-LRS identified intronic splice variants that were confirmed by either RT-PCR or exon trapping to affect splicing; in one case, T-LRS identified a 339 kbp deletion, and in two cases, pathogenic missense variants. Phasing of long reads predicted all newly identified variants were on a different haplotype than the previously known variant. Finally, in one case, RT-PCR previously identified skipping of exon 20; however, T-LRS did not detect a pathogenic DNA sequence variant.
CONCLUSION
CONCLUSIONS
T-LRS is an effective method for identifying missing pathogenic variants. Although limitations with computational prediction algorithms can hinder the interpretation of variants, T-LRS is particularly effective in identifying intronic variants.
Identifiants
pubmed: 35534204
pii: jmedgenet-2022-108485
doi: 10.1136/jmedgenet-2022-108485
pmc: PMC9613861
mid: NIHMS1802737
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NCI NIH HHS
ID : R01 CA210916
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH101221
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG011744
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006493
Pays : United States
Informations de copyright
© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.
Déclaration de conflit d'intérêts
Competing interests: DEM has received travel support from Oxford Nanopore Technologies (ONT) to speak on their behalf. DEM is a paid consultant for and holds stock options in MyOme. DEM and EEE are engaged in a research agreement with ONT. EEE is a scientific advisory board (SAB) member of Variant Bio, Inc.
Références
Genome Biol. 2016 Jun 06;17(1):122
pubmed: 27268795
Nat Commun. 2019 Nov 21;10(1):5284
pubmed: 31754102
J Med Genet. 2021 Dec;58(12):850-852
pubmed: 33060287
Bioinformatics. 2019 Sep 1;35(17):2907-2915
pubmed: 30668829
Nature. 2019 Apr;568(7753):551-556
pubmed: 30971823
Cell. 2019 Jan 24;176(3):535-548.e24
pubmed: 30661751
DNA Repair (Amst). 2013 Jun 1;12(6):414-21
pubmed: 23583337
Genome Biol. 2020 Aug 3;21(1):189
pubmed: 32746918
J Hum Genet. 2021 Nov;66(11):1053-1060
pubmed: 33958709
Hum Genet. 2010 Jul;128(1):103-11
pubmed: 20443122
Am J Hum Genet. 2021 Aug 5;108(8):1436-1449
pubmed: 34216551
Aging Cell. 2019 Oct;18(5):e12995
pubmed: 31259468
Hum Mutat. 2017 Jan;38(1):7-15
pubmed: 27667302
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Geriatr Gerontol Int. 2021 Feb;21(2):131-132
pubmed: 33118681
Nat Biotechnol. 2020 Apr;38(4):433-438
pubmed: 32042167
Eur J Dermatol. 2007 May-Jun;17(3):213-6
pubmed: 17478382
Nat Rev Genet. 2020 Oct;21(10):597-614
pubmed: 32504078
Geriatr Gerontol Int. 2013 Apr;13(2):475-81
pubmed: 22817610
Brief Funct Genomics. 2016 Sep;15(5):374-84
pubmed: 26654982
Biosci Trends. 2013 Feb;7(1):13-22
pubmed: 23524889
Nat Methods. 2018 Jun;15(6):461-468
pubmed: 29713083
Ageing Res Rev. 2017 Jan;33:105-114
pubmed: 26993153
Hum Mutat. 2006 Jun;27(6):558-67
pubmed: 16673358
Clin Genet. 2018 Mar;93(3):439-449
pubmed: 28950406
Nat Biotechnol. 2021 Apr;39(4):442-450
pubmed: 33257864
Aging (Albany NY). 2020 Dec 29;12(24):24940-24956
pubmed: 33373317
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
Science. 2002 Aug 9;297(5583):1003-7
pubmed: 12169732
Nat Genet. 1994 Jan;6(1):98-105
pubmed: 8136842
Hum Mol Genet. 1996 Dec;5(12):1909-13
pubmed: 8968742
Proc R Soc Med. 1967 Feb;60(2):135-6
pubmed: 6018831
J Gerontol A Biol Sci Med Sci. 2021 Jan 18;76(2):253-259
pubmed: 33295962
Biophys Chem. 2020 Oct;265:106433
pubmed: 32702531
Am J Nephrol. 2015;42(1):78-84
pubmed: 26340091
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894
pubmed: 30371827
Mol Genet Genomic Med. 2013 May 1;1(1):7-14
pubmed: 23936869
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427