Mechanisms and clinical implications of intervertebral disc calcification.
Journal
Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
accepted:
06
04
2022
pubmed:
10
5
2022
medline:
31
5
2022
entrez:
9
5
2022
Statut:
ppublish
Résumé
Low back pain is a leading cause of disability worldwide. Intervertebral disc (IVD) degeneration is often associated with low back pain but is sometimes asymptomatic. IVD calcification is an often overlooked disc phenotype that might have considerable clinical impact. IVD calcification is not a rare finding in ageing or in degenerative and scoliotic spinal conditions, but is often ignored and under-reported. IVD calcification may lead to stiffer IVDs and altered segmental biomechanics, more severe IVD degeneration, inflammation and low back pain. Calcification is not restricted to the IVD but is also observed in the degeneration of other cartilaginous tissues, such as joint cartilage, and is involved in the tissue inflammatory process. Furthermore, IVD calcification may also affect the vertebral endplate, leading to Modic changes (non-neoplastic subchondral vertebral bone marrow lesions) and the generation of pain. Such effects in the spine might develop in similar ways to the development of subchondral marrow lesions of the knee, which are associated with osteoarthritis-related pain. We propose that IVD calcification is a phenotypic biomarker of clinically relevant disc degeneration and endplate changes. As IVD calcification has implications for the management and prognosis of degenerative spinal changes and could affect targeted therapeutics and regenerative approaches for the spine, awareness of IVD calcification should be raised in the spine community.
Identifiants
pubmed: 35534553
doi: 10.1038/s41584-022-00783-7
pii: 10.1038/s41584-022-00783-7
pmc: PMC9210932
mid: NIHMS1815911
doi:
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
352-362Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR057397
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR069315
Pays : United States
Organisme : CIHR
Pays : Canada
Informations de copyright
© 2022. Springer Nature Limited.
Références
Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheum. 18, 47–60 (2022).
doi: 10.1038/s41584-021-00713-z
Samartzis, D. et al. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J. Bone Joint Surg. Am. 93, 662–670 (2011).
pubmed: 21471420
doi: 10.2106/JBJS.I.01568
Adams, M. A. & Dolan, P. Intervertebral disc degeneration: evidence for two distinct phenotypes. J. Anat. 221, 497–506 (2012).
pubmed: 22881295
pmcid: 3512277
doi: 10.1111/j.1469-7580.2012.01551.x
Buckwalter, J. A. Aging and degeneration of the human intervertebral disc. Spine 20, 1307–1314 (1995).
pubmed: 7660243
doi: 10.1097/00007632-199506000-00022
Feng, G., Zhang, Z., Dang, M., Rambhia, K. J. & Ma, P. X. Nanofibrous spongy microspheres to deliver rabbit mesenchymal stem cells and anti-miR-199a to regenerate nucleus pulposus and prevent calcification. Biomaterials 256, 120213 (2020).
pubmed: 32736170
pmcid: 7423691
doi: 10.1016/j.biomaterials.2020.120213
Rutges, J. P. et al. Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18, 1487–1595 (2010).
pubmed: 20723612
doi: 10.1016/j.joca.2010.08.006
Boos, N., Nerlich, A. G., Wiest, I., von der Mark, K. & Aebi, M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem. Cell Biol. 108, 471–480 (1997).
pubmed: 9450629
doi: 10.1007/s004180050187
Steinbach, L. S. Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol. Clin. North. Am. 42, 185–205 (2004).
pubmed: 15049531
doi: 10.1016/S0033-8389(03)00160-X
Slouma, M. et al. Calcifying nucleopathy mimicking infectious spondylodiscitis. Acta Reumatol. Port. 45, 61–64 (2020).
pubmed: 32578575
Zehra, U., Bow, C., Cheung, J. P., Lu, W. & Samartzis, D. The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI. Eur. Spine J. 27, 1049–1057 (2017).
pubmed: 28993894
doi: 10.1007/s00586-017-5312-3
Samartzis et al. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J. 15, 1919–1932 (2015).
pubmed: 26303178
pmcid: 5473425
doi: 10.1016/j.spinee.2014.09.010
Luk, K. D. & Samartzis, D. Intervertebral disc “dysgeneration”. Spine J. 15, 1915–1918 (2015).
pubmed: 26303177
doi: 10.1016/j.spinee.2014.07.020
Khan, I., Hargunani, R. & Saifuddin, A. The lumbar high-intensity zone: 20 years on. Clin. Radiol. 69, 551–558 (2014).
pubmed: 24613582
doi: 10.1016/j.crad.2013.12.012
Ito, M. et al. Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 23, 1252–1258 (1998). discussion 9–60.
pubmed: 9636979
doi: 10.1097/00007632-199806010-00016
Iatridis, J. C., Nicoll, S. B., Michalek, A. J., Walter, B. A. & Gupta, M. S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13, 243–262 (2013).
pubmed: 23369494
pmcid: 3612376
doi: 10.1016/j.spinee.2012.12.002
Galbusera, F. et al. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23, S324–S332 (2014).
pubmed: 24482074
Niosi, C. A. & Oxland, T. R. Degenerative mechanics of the lumbar spine. Spine J. 4, 202s–208ss (2004).
pubmed: 15541668
doi: 10.1016/j.spinee.2004.07.013
Hristova, G. I. et al. Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. Soc. 29, 1888–1895 (2011).
doi: 10.1002/jor.21456
Roberts, S., Menage, J. & Eisenstein, S. M. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J. Orthop. Res. Soc. 11, 747–757 (1993).
doi: 10.1002/jor.1100110517
Krzyzanowska, A. K. et al. Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1.2021. Sci. Rep. 11, 8271 (2021).
pubmed: 33859255
pmcid: 8050288
doi: 10.1038/s41598-021-87665-2
Weinberger, A. & Myers, A. R. Intervertebral disc calcification in adults: a review. Semin. Arthritis Rheum. 8, 69–75 (1978).
pubmed: 358398
doi: 10.1016/0049-0172(78)90035-5
Sandstrom, C. Calcifications of the intervertebral discs and the relationship between various types of calcifications in the soft tissues of the body. Acta Radiol. 36, 217–233 (1951).
pubmed: 14894283
doi: 10.3109/00016925109176980
Chanchairujira, K. et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230, 499–503 (2004).
pubmed: 14752191
doi: 10.1148/radiol.2302011842
Castriota-Scanderbeg A., Dallapiccola B. Abnormal Skeletal Phenotypes: From Simple Signs to Complex Diagnoses (Springer, 2005).
Sieroń, D. et al. Intervertebral disc calcification in children: case description and review of relevant literature. Pol. J. Radiol. 78, 78–80 (2013).
pubmed: 23493855
pmcid: 3596152
doi: 10.12659/PJR.883773
Ahemad, A. M., Dasgupta, B. & Jagiasi, J. Intervertebral disc calcification in a child. Indian J. Orthop. 42, 480–481 (2008).
pubmed: 19753241
pmcid: 2740342
doi: 10.4103/0019-5413.43401
Mizukawa, K., Kobayashi, T., Yamada, N. & Hirota, T. Intervertebral disc calcification with ossification of the posterior longitudinal ligament. Pediatr. Int. 59, 622–624 (2017).
pubmed: 28326638
doi: 10.1111/ped.13243
Lernout, C., Haas, H., Rubio, A. & Griffet, J. Pediatric intervertebral disk calcification in childhood: three case reports and review of literature. Childs Nerv. Syst. 25, 1019–1023 (2009).
pubmed: 19424706
doi: 10.1007/s00381-009-0869-8
Coppa, V. et al. Pediatric intervertebral disc calcification: case series and systematic review of the literature. J. Pediatr. Orthop. B 29, 590–598 (2020).
pubmed: 31021897
doi: 10.1097/BPB.0000000000000638
Beluffi, G., Fiori, P. & Sileo, C. Intervertebral disc calcifications in children. Radiol. Med. 114, 331–341 (2009).
pubmed: 19274446
doi: 10.1007/s11547-009-0368-8
Gerlach, R. et al. Intervertebral disc calcification in childhood — a case report and review of the literature. Acta Neurochir. 143, 89–93 (2001).
pubmed: 11345723
doi: 10.1007/s007010170143
Dushnicky, M. J., Okura, H., Shroff, M., Laxer, R. M. & Kulkarni, A. V. Pediatric idiopathic intervertebral disc calcification: single-center series and review of the literature. J. Pediatr. 206, 212–216 (2019).
pubmed: 30466792
doi: 10.1016/j.jpeds.2018.10.058
Sato, S. et al. The distinct role of the Runx proteins in chondrocyte differentiation and intervertebral disc degeneration: findings in murine models and in human disease. Arthritis Rheum. 58, 2764–2775 (2008).
pubmed: 18759297
doi: 10.1002/art.23805
Haschtmann, D., Ferguson, S. J. & Stoyanov, J. V. B. M. P.-2. and TGF-beta3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J. 21, 1724–1733 (2012).
pubmed: 22639297
pmcid: 3459107
doi: 10.1007/s00586-012-2371-3
Wang, G., Kang, Y., Chen, F. & Wang, B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv. Syst. 32, 381–386 (2016).
pubmed: 26210494
doi: 10.1007/s00381-015-2840-1
Cheng, X. G. et al. Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skeletal Radiol. 25, 231–235 (1996).
pubmed: 8741057
doi: 10.1007/s002560050070
Chou, C. W. Pathological studies on calcification of the intervertebral discs. Nihon Seikeigeka Gakkai Zasshi 56, 331–345 (1982).
pubmed: 7097096
Bangert, B. A. et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195, 437–443 (1995).
pubmed: 7724763
doi: 10.1148/radiology.195.2.7724763
Tyrrell, P. N., Davies, A. M., Evans, N. & Jubb, R. W. Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin. Radiol. 50, 377–383 (1995).
pubmed: 7789021
doi: 10.1016/S0009-9260(05)83134-4
Malghem, J. et al. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skeletal Radiol. 34, 80–86 (2005).
pubmed: 15480646
doi: 10.1007/s00256-004-0843-1
Blandino, A., Longo, M., Loria, G., Gaeta, M. & Pandolfo, I. The fatty disc: an unusual cause of bright intervertebral disc on T1-weighted conventional spin-echo MR: a case report. J. Neuroradiol. 10, 619–621 (1997).
Stigen, Ø., Ciasca, T. & Kolbjørnsen, Ø. Calcification of extruded intervertebral discs in dachshunds: a radiographic, computed tomographic and histopathological study of 25 cases. Acta Vet. Scand. 61, 13 (2019).
pubmed: 30849997
pmcid: 6408767
doi: 10.1186/s13028-019-0448-2
Shao, J. et al. Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet. Disord. 17, 191 (2016).
pubmed: 27495942
pmcid: 4974757
doi: 10.1186/s12891-016-1015-x
Karamouzian, S. et al. Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine 35, 881–886 (2010).
pubmed: 20354479
doi: 10.1097/BRS.0b013e3181b9c986
Takae, R. et al. Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc. Spine 24, 1397–1401 (1999).
pubmed: 10423782
doi: 10.1097/00007632-199907150-00002
Wang, Z., Hutton, W. C. & Yoon, S. T. ISSLS Prize winner: effect of link protein peptide on human intervertebral disc cells. Spine 38, 1501–1507 (2013).
pubmed: 23370687
doi: 10.1097/BRS.0b013e31828976c1
Bach, F. C. et al. Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine 2, e1071 (2019).
pubmed: 31891120
pmcid: 6920702
doi: 10.1002/jsp2.1071
Girodias, J. B., Azouz, E. M. & Marton, D. Intervertebral disk space calcification. A report of 51 children with a review of the literature. Pediatr. Radiol. 21, 541–546 (1991).
pubmed: 1815170
doi: 10.1007/BF02012591
Bertram, H. et al. Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem. Biophys. Res. Commun. 342, 963–972 (2006).
pubmed: 16598853
doi: 10.1016/j.bbrc.2006.02.048
Akhtar, S., Davies, J. R. & Caterson, B. Ultrastructural immunolocalization of alpha-elastin and keratan sulfate proteoglycan in normal and scoliotic lumbar disc. Spine 30, 1762–1769 (2005).
pubmed: 16094279
doi: 10.1097/01.brs.0000171912.44625.29
Meir, A., McNally, D. S., Fairbank, J. C., Jones, D. & Urban, J. P. The internal pressure and stress environment of the scoliotic intervertebral disc — a review. Proc. Inst. Mech. Eng. H 222, 209–219 (2008).
pubmed: 18441756
doi: 10.1243/09544119JEIM303
Illien-Junger, S. et al. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell Mater. 32, 257–270 (2016).
pubmed: 27858401
pmcid: 5482230
doi: 10.22203/eCM.v032a17
Iatridis, J. C. & ap Gwynn, I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37, 1165–1175 (2004).
pubmed: 15212921
pmcid: 7212828
doi: 10.1016/j.jbiomech.2003.12.026
Roberts, S., Urban, J. P. G., Evans, H. & Eisenstein, S. M. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21, 415–420 (1996).
pubmed: 8658243
doi: 10.1097/00007632-199602150-00003
Benneker, L. M., Heini, P. F., Alini, M., Anderson, S. E. & Ito, K. 2004 Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30, 167–173 (2005).
pubmed: 15644751
doi: 10.1097/01.brs.0000150833.93248.09
Zehra, U., Robson-Brown, K., Adams, M. A. & Dolan, P. Porosity and thickness of the vertebral endplate depend on local mechanical loading. Spine 40, 1173–1180 (2015).
pubmed: 25893360
doi: 10.1097/BRS.0000000000000925
Rodriguez, A. G. et al. Morphology of the human vertebral endplate. J. Orthop. Res. 30, 280–287 (2012).
pubmed: 21812023
doi: 10.1002/jor.21513
Stokes, I. A. & Iatridis, J. C. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29, 2724–2732 (2004).
pubmed: 15564921
pmcid: 7173624
doi: 10.1097/01.brs.0000146049.52152.da
Novais, E. J. et al. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, e13148 (2020).
pubmed: 32319726
pmcid: 7253061
doi: 10.1111/acel.13148
Wu, J., Wu, D., Guo, K., Yuan, F. & Ran, B. OPN polymorphism is associated with the susceptibility to cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell. Physiol. Biochem. 34, 565–574 (2014).
pubmed: 25116355
doi: 10.1159/000363023
Gao, S. G. et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18, 82–87 (2010).
pubmed: 19747583
doi: 10.1016/j.joca.2009.07.009
Mogensen, M. S. et al. Genome-wide association study in Dachshund: identification of a major locus affecting intervertebral disc calcification. J. Hered. https://doi.org/10.1093/jhered/esr021 (2011).
doi: 10.1093/jhered/esr021
pubmed: 21846751
Mogensen, M. S. et al. Validation of genome-wide intervertebral disk calcification associations in dachshund and further investigation of the chromosome 12 susceptibility locus. Front Genet https://doi.org/10.3389/fgene.2012.00225 (2012).
doi: 10.3389/fgene.2012.00225
pubmed: 23125846
pmcid: 3485664
Huang, H. & Trussell, L. O. KCNQ5 channels control resting properties and release probability of a synapse. Nat. Neurosci. 14, 840–847 (2011).
pubmed: 21666672
pmcid: 3133966
doi: 10.1038/nn.2830
Jensen, V. F., Beck, S., Christensen, K. A. & Arnbjerg, J. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds. J. Am. Vet. Med. Assoc. 233, 1090–1095 (2008).
pubmed: 18828719
doi: 10.2460/javma.233.7.1090
Rohdin, C., Jeserevic, J., Viitmaa, R. & Cizinauskas, S. Prevalence of radiographic detectable intervertebral disc calcifications in Dachshunds surgically treated for disc extrusion. Acta Vet. Scand. 52, 24 (2010).
pubmed: 20398282
pmcid: 2873269
doi: 10.1186/1751-0147-52-24
Feinberg, J., Boachie-Adjei, O., Bullough, P. G. & Boskey, A. L. The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin. Orthop. Relat. Res. 254, 303–310 (1990).
doi: 10.1097/00003086-199005000-00046
Brodeur, M. R. et al. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One 9, e85922 (2014).
pubmed: 24465790
pmcid: 3897559
doi: 10.1371/journal.pone.0085922
Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).
pubmed: 24176735
doi: 10.1016/j.jbspin.2013.09.007
Han, Y. et al. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: implications for disc degeneration. Biochem. Biophys. Res. Commun. 516, 1026–1032 (2019).
pubmed: 28342871
doi: 10.1016/j.bbrc.2017.03.111
Illien-Junger, S. et al. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice. PLoS One 10, e0116625 (2015).
pubmed: 25668621
pmcid: 4323205
doi: 10.1371/journal.pone.0116625
Illien-Junger, S. et al. Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PLoS One 8, e64302 (2013).
pubmed: 23691192
pmcid: 3656842
doi: 10.1371/journal.pone.0064302
Bessueille, L. & Magne, D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol. Life Sci. 72, 2475–2489 (2015).
pubmed: 25746430
doi: 10.1007/s00018-015-1876-4
Joshi, F. R. et al. Does vascular calcification accelerate inflammation? J. Am. Coll. Cardiol. 67, 69–78 (2016).
pubmed: 26764069
doi: 10.1016/j.jacc.2015.10.050
Raggi, P. Inflammation and calcification: the chicken or the hen? Atherosclerosis 238, 173–174 (2015).
pubmed: 25525745
doi: 10.1016/j.atherosclerosis.2014.10.025
Ikeda, K. et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 425, 39–44 (2012).
pubmed: 22820183
doi: 10.1016/j.bbrc.2012.07.045
Peng, B. et al. The pathogenesis of discogenic low back pain. J. Bone Joint Surg. Br. 87, 62–67 (2005).
pubmed: 15686239
doi: 10.1302/0301-620X.87B1.15708
Saifuddin, A., Mitchell, R. & Taylor, B. A. Extradural inflammation associated with annular tears: demonstration with gadolinium-enhanced lumbar spine MRI. Eur. Spine J. 8, 34–39 (1999).
pubmed: 10190852
pmcid: 3611123
doi: 10.1007/s005860050124
Grant, M. P. et al. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cell Mater. 32, 137–151 (2016).
pubmed: 27452962
doi: 10.22203/eCM.v032a09
Canaff, L. & Hendy, G. N. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1β. Role of the NF-κB pathway and κB elements. J. Biol. Chem. 280, 14177–14188 (2005).
pubmed: 15684428
doi: 10.1074/jbc.M408587200
Shao, J., Yu, M., Jiang, L., Wu, F. & Liu, X. Sequencing and bioinformatics analysis of the differentially expressed genes in herniated discs with or without calcification. Int. J. Mol. Med. 39, 81–90 (2017).
pubmed: 27959380
doi: 10.3892/ijmm.2016.2821
Zehra, U. et al. Spinopelvic alignment predicts disc calcification, displacement, and Modic changes: evidence of an evolutionary etiology for clinically-relevant spinal phenotypes. JOR Spine 3, e1083 (2020).
pubmed: 32211594
pmcid: 7084054
doi: 10.1002/jsp2.1083
Du, G. et al. Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo. Am. J. Sports Med. 44, 652–663 (2016).
pubmed: 26792705
pmcid: 4775287
doi: 10.1177/0363546515621285
Roberts, S., Bains, M. A., Kwan, A., Menage, J. & Eisenstein, S. M. Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem. J. 30, 89–95 (1998).
pubmed: 10192549
doi: 10.1023/A:1003278915981
Shen, G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofac. Res. 8, 11–17 (2005).
pubmed: 15667640
doi: 10.1111/j.1601-6343.2004.00308.x
Jin, L. et al. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 9, e96519 (2014).
pubmed: 24796761
pmcid: 4010482
doi: 10.1371/journal.pone.0096519
Feng, G. et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J. Bone Joint Surg. Am. 92, 675–685 (2010).
pubmed: 20194326
doi: 10.2106/JBJS.H.01672
Hsu, H. H. Mechanisms of initiating calcification. ATP-stimulated Ca- and Pi-depositing activity of isolated matrix vesicles. Int. J. Biochem. 26, 1351–1356 (1994).
pubmed: 7890114
doi: 10.1016/0020-711X(94)90177-5
Ornoy, A. & Langer, Y. Scanning electron microscopy studies on the origin and structure of matrix vesicles in epiphyseal cartilage from young rats. Isr. J. Med. Sci. 14, 745–752 (1978).
pubmed: 681166
Anderson, H. C. Mechanism of mineral formation in bone. Lab. Invest. 60, 320–330 (1989).
pubmed: 2648065
Wuthier, R. E. et al. Mechanism of matrix vesicle calcification: characterization of ion channels and the nucleational core of growth plate vesicles. Bone Miner. 17, 290–295 (1992).
pubmed: 1377071
doi: 10.1016/0169-6009(92)90753-Z
Balcerzak, M. et al. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim. Pol. 50, 1019–1038 (2003).
pubmed: 14739992
doi: 10.18388/abp.2003_3629
Ali, S. Y., Sajdera, S. W. & Anderson, H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl Acad. Sci. USA 67, 1513–1520 (1970).
pubmed: 5274475
pmcid: 283384
doi: 10.1073/pnas.67.3.1513
Wu, L. N., Genge, B. R., Lloyd, G. C. & Wuthier, R. E. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J. Biol. Chem. 266, 1195–1203 (1991).
pubmed: 1845989
doi: 10.1016/S0021-9258(17)35301-2
Bonucci, E. Comments on the ultrastructural morphology of the calcification process: an attempt to reconcile matrix vesicles, collagen fibrils, and crystal ghosts. Bone Miner. 17, 219–222 (1992).
pubmed: 1611310
doi: 10.1016/0169-6009(92)90740-5
Lin, Z. et al. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 88, 47–55 (2016).
pubmed: 27080510
pmcid: 4899086
doi: 10.1016/j.bone.2016.03.018
Shapiro, I. M., Landis, W. J. & Risbud, M. V. Matrix vesicles: are they anchored exosomes? Bone 79, 29–36 (2015).
pubmed: 25980744
pmcid: 4501874
doi: 10.1016/j.bone.2015.05.013
Qin, Y., Sun, R., Wu, C., Wang, L. & Zhang, C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int. J. Mol. Sci. 17, 712 (2016).
pmcid: 4881534
doi: 10.3390/ijms17050712
Cui, Y., Luan, J., Li, H., Zhou, X. & Han, J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 590, 185–192 (2016).
pubmed: 26763102
doi: 10.1002/1873-3468.12024
Bach, F. C. et al. Soluble and pelletable factors in porcine, canine and human notochordal cell-conditioned medium: implications for IVD regeneration. Eur. Cell Mater. 32, 163–180 (2016).
pubmed: 27572543
doi: 10.22203/eCM.v032a11
Bach, F. et al. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells. Oncotarget 8, 88845–88856 (2017).
pubmed: 29179481
pmcid: 5687651
doi: 10.18632/oncotarget.21483
Lu, K. et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 8, 108 (2017).
pubmed: 28486958
pmcid: 5424403
doi: 10.1186/s13287-017-0563-9
Christoffersen, J. & Landis, W. J. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat. Rec. 230, 435–450 (1991).
pubmed: 1928750
doi: 10.1002/ar.1092300402
Miller, G. J. & DeMarzo, A. M. Ultrastructural localization of matrix vesicles and alkaline phosphatase in the Swarm rat chondrosarcoma: their role in cartilage calcification. Bone 9, 235–241 (1988).
pubmed: 3166840
doi: 10.1016/8756-3282(88)90036-1
Borras, T. & Comes, N. Evidence for a calcification process in the trabecular meshwork. Exp. Eye Res. 88, 738–746 (2009).
pubmed: 19084518
doi: 10.1016/j.exer.2008.11.027
Kim, E. E. & Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991).
pubmed: 2010919
doi: 10.1016/0022-2836(91)90724-K
Narisawa, S., Frohlander, N. & Millan, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).
pubmed: 9056646
doi: 10.1002/(SICI)1097-0177(199703)208:3<432::AID-AJA13>3.0.CO;2-1
Anderson, H. C. et al. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am. J. Pathol. 164, 841–847 (2004).
pubmed: 14982838
pmcid: 1613274
doi: 10.1016/S0002-9440(10)63172-0
Chang, W. et al. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 140, 1911–1919 (1999).
pubmed: 10098531
doi: 10.1210/endo.140.4.6639
Rodriguez, L., Cheng, Z., Chen, T. H., Tu, C. & Chang, W. Extracellular calcium and parathyroid hormone-related peptide signaling modulate the pace of growth plate chondrocyte differentiation. Endocrinology 146, 4597–4608 (2005).
pubmed: 16099862
doi: 10.1210/en.2005-0437
Dvorak, M. M. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl Acad. Sci. USA 101, 5140–5145 (2004).
pubmed: 15051872
pmcid: 387387
doi: 10.1073/pnas.0306141101
Yuan, F. L. et al. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by regulating PPi metabolism. J. Cell. Mol. Med. 23, 3665–3675 (2019).
pubmed: 30892812
pmcid: 6484318
doi: 10.1111/jcmm.14268
Ohshima, H. & Urban, J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine 17, 1079–1082 (1992).
pubmed: 1411761
doi: 10.1097/00007632-199209000-00012
Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 15, 33–51 (2018).
pubmed: 30443043
pmcid: 6535143
doi: 10.1038/s41574-018-0115-0
Brown, E. M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 333–343 (2013).
pubmed: 23856263
doi: 10.1016/j.beem.2013.02.006
Stock, J. L. et al. Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis. J. Clin. Endocrinol. Metab. 84, 3036–3040 (1999).
pubmed: 10487661
Burton, D. W. et al. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13, 395–404 (2005).
pubmed: 15882563
doi: 10.1016/j.joca.2005.01.002
Hough, T. A. et al. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc. Natl Acad. Sci. USA 101, 13566–13571 (2004).
pubmed: 15347804
pmcid: 518795
doi: 10.1073/pnas.0405516101
Fields, A. J., Rodriguez, D., Gary, K. N., Liebenberg, E. C. & Lotz, J. C. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J. Orthop. Res. 32, 245–252 (2014).
pubmed: 24273192
doi: 10.1002/jor.22516
Rodriguez, A. G. et al. Human disc nucleus properties and vertebral endplate permeability. Spine 36, 512–520 (2011).
pubmed: 21240044
pmcid: 3062730
doi: 10.1097/BRS.0b013e3181f72b94
Yue, B. et al. Thoracic intervertebral disc calcification and herniation in adults: a report of two cases. Eur. Spine J. 25, 118–123 (2016).
pubmed: 26329651
doi: 10.1007/s00586-015-4214-5
Choi, J. W. et al. Transdural approach for calcified central disc herniations of the upper lumbar spine. Technical note. J. Neurosurg. Spine 7, 370–374 (2007).
pubmed: 17877277
doi: 10.3171/SPI-07/09/370
Dabo, X. et al. The clinical results of percutaneous endoscopic interlaminar discectomy (PEID) in the treatment of calcified lumbar disc herniation: a case-control study. Pain Phys. 19, 69–76 (2016).
doi: 10.36076/ppj/2016.19.69
Court, C., Mansour, E. & Bouthors, C. Thoracic disc herniation: surgical treatment. Orthop. Traumatol. Surg. Res. 104, S31–S40 (2018).
pubmed: 29225115
doi: 10.1016/j.otsr.2017.04.022
Yu, L. et al. Removal of calcified lumbar disc herniation with endoscopic-matched ultrasonic osteotome — our preliminary experience. Br. J. Neurosurg. 34, 80–85 (2020).
pubmed: 31718310
doi: 10.1080/02688697.2019.1687850
Nogueira-Barbosa, M. H., da Silva Herrero, C. F., Pasqualini, W. & Defino, H. L. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal Radiol. 42, 1161–1164 (2013).
pubmed: 23532559
doi: 10.1007/s00256-013-1602-y
Rodacki, M. A., Castro, C. E. & Castro, D. S. Diffuse vertebral body edema due to calcified intraspongious disk herniation. Neuroradiology 47, 316–321 (2005).
pubmed: 15891876
doi: 10.1007/s00234-004-1262-7
Azizaddini, S., Arefanian, S., Redjal, N., Walcott, B. P. & Mollahoseini, R. Adult acute calcific discitis confined to the nucleus pulposus in the cervical spine: case report. J. Neurosurg. Spine 19, 170–173 (2013).
pubmed: 23746089
doi: 10.3171/2013.4.SPINE12906
Crockett, M. T., Kelly, B. S., van Baarsel, S. & Kavanagh, E. C. Modic type 1 vertebral endplate changes: injury, inflammation, or infection? Am. J. Roentgenol. 209, 167–170 (2017).
doi: 10.2214/AJR.16.17403
Pang, H. et al. The UTE Disc Sign on MRI: a novel imaging biomarker associated with degenerative spine changes, low back pain and disability. Spine 43, 503–511 (2017).
doi: 10.1097/BRS.0000000000002369
Eyvazov, K. et al. The association of lumbar curve magnitude and spinal range of motion in adolescent idiopathic scoliosis: a cross-sectional study. 2017. BMC Musculoskelet. Disord. 18, 51 (2017).
pubmed: 28143455
pmcid: 5282845
doi: 10.1186/s12891-017-1423-6
Samartzis, D. et al. Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes. PLoS One 10, e0120302 (2015).
pubmed: 26270549
pmcid: 4535921
doi: 10.1371/journal.pone.0120302
Yao, G. et al. Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine 42, 1622–1628 (2017).
pubmed: 27997505
doi: 10.1097/BRS.0000000000002046
Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M. & Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine 35, E475–E480 (2010).
pubmed: 20421856
doi: 10.1097/BRS.0b013e3181cd2cf4
Orozco, L. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822–828 (2011).
pubmed: 21792091
doi: 10.1097/TP.0b013e3182298a15
van Gool, S. A. et al. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One 7, e44561 (2012).
pubmed: 23144774
pmcid: 3489884
doi: 10.1371/journal.pone.0044561
Vickers, L., Thorpe, A. A., Snuggs, J., Sammon, C. & Le Maitre, C. L. Mesenchymal stem cell therapies for intervertebral disc degeneration: Consideration of the degenerate niche. JOR Spine 2, e1055 (2019).
pubmed: 31463465
pmcid: 6686825
doi: 10.1002/jsp2.1055
Vadala, G. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348–355 (2012).
pubmed: 21671407
doi: 10.1002/term.433
Liu, S. et al. Susceptibility weighted imaging: current status and future directions. NMR Biomed. https://doi.org/10.1002/nbm.3552 (2017).
doi: 10.1002/nbm.3552
pubmed: 29285809
pmcid: 5841465
Saavedra-Pozo, F. M., Deusdara, R. A. & Benzel, E. C. Adjacent segment disease perspective and review of the literature. Ochsner J. 14, 78–83 (2014).
pubmed: 24688337
pmcid: 3963057
Eskola, P. J. et al. Genetic association studies in lumbar disc degeneration: a systematic review. PLoS One 7, e49995 (2012).
pubmed: 23185509
pmcid: 3503778
doi: 10.1371/journal.pone.0049995
Mallow, G. M. et al. Intelligence-based spine care model: a new era of research and clinical decision-making. Glob. Spine J. 11, 135–145 (2021).
doi: 10.1177/2192568220973984
Samartzis, D. et al. Precision spine care: a new era of discovery, innovation, and global impact. Glob. Spine J. 8, 321–322 (2018).
doi: 10.1177/2192568218774044