Mechanisms and clinical implications of intervertebral disc calcification.


Journal

Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080

Informations de publication

Date de publication:
06 2022
Historique:
accepted: 06 04 2022
pubmed: 10 5 2022
medline: 31 5 2022
entrez: 9 5 2022
Statut: ppublish

Résumé

Low back pain is a leading cause of disability worldwide. Intervertebral disc (IVD) degeneration is often associated with low back pain but is sometimes asymptomatic. IVD calcification is an often overlooked disc phenotype that might have considerable clinical impact. IVD calcification is not a rare finding in ageing or in degenerative and scoliotic spinal conditions, but is often ignored and under-reported. IVD calcification may lead to stiffer IVDs and altered segmental biomechanics, more severe IVD degeneration, inflammation and low back pain. Calcification is not restricted to the IVD but is also observed in the degeneration of other cartilaginous tissues, such as joint cartilage, and is involved in the tissue inflammatory process. Furthermore, IVD calcification may also affect the vertebral endplate, leading to Modic changes (non-neoplastic subchondral vertebral bone marrow lesions) and the generation of pain. Such effects in the spine might develop in similar ways to the development of subchondral marrow lesions of the knee, which are associated with osteoarthritis-related pain. We propose that IVD calcification is a phenotypic biomarker of clinically relevant disc degeneration and endplate changes. As IVD calcification has implications for the management and prognosis of degenerative spinal changes and could affect targeted therapeutics and regenerative approaches for the spine, awareness of IVD calcification should be raised in the spine community.

Identifiants

pubmed: 35534553
doi: 10.1038/s41584-022-00783-7
pii: 10.1038/s41584-022-00783-7
pmc: PMC9210932
mid: NIHMS1815911
doi:

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

352-362

Subventions

Organisme : NIAMS NIH HHS
ID : R01 AR057397
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR069315
Pays : United States
Organisme : CIHR
Pays : Canada

Informations de copyright

© 2022. Springer Nature Limited.

Références

Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheum. 18, 47–60 (2022).
doi: 10.1038/s41584-021-00713-z
Samartzis, D. et al. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J. Bone Joint Surg. Am. 93, 662–670 (2011).
pubmed: 21471420 doi: 10.2106/JBJS.I.01568
Adams, M. A. & Dolan, P. Intervertebral disc degeneration: evidence for two distinct phenotypes. J. Anat. 221, 497–506 (2012).
pubmed: 22881295 pmcid: 3512277 doi: 10.1111/j.1469-7580.2012.01551.x
Buckwalter, J. A. Aging and degeneration of the human intervertebral disc. Spine 20, 1307–1314 (1995).
pubmed: 7660243 doi: 10.1097/00007632-199506000-00022
Feng, G., Zhang, Z., Dang, M., Rambhia, K. J. & Ma, P. X. Nanofibrous spongy microspheres to deliver rabbit mesenchymal stem cells and anti-miR-199a to regenerate nucleus pulposus and prevent calcification. Biomaterials 256, 120213 (2020).
pubmed: 32736170 pmcid: 7423691 doi: 10.1016/j.biomaterials.2020.120213
Rutges, J. P. et al. Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18, 1487–1595 (2010).
pubmed: 20723612 doi: 10.1016/j.joca.2010.08.006
Boos, N., Nerlich, A. G., Wiest, I., von der Mark, K. & Aebi, M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem. Cell Biol. 108, 471–480 (1997).
pubmed: 9450629 doi: 10.1007/s004180050187
Steinbach, L. S. Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol. Clin. North. Am. 42, 185–205 (2004).
pubmed: 15049531 doi: 10.1016/S0033-8389(03)00160-X
Slouma, M. et al. Calcifying nucleopathy mimicking infectious spondylodiscitis. Acta Reumatol. Port. 45, 61–64 (2020).
pubmed: 32578575
Zehra, U., Bow, C., Cheung, J. P., Lu, W. & Samartzis, D. The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI. Eur. Spine J. 27, 1049–1057 (2017).
pubmed: 28993894 doi: 10.1007/s00586-017-5312-3
Samartzis et al. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J. 15, 1919–1932 (2015).
pubmed: 26303178 pmcid: 5473425 doi: 10.1016/j.spinee.2014.09.010
Luk, K. D. & Samartzis, D. Intervertebral disc “dysgeneration”. Spine J. 15, 1915–1918 (2015).
pubmed: 26303177 doi: 10.1016/j.spinee.2014.07.020
Khan, I., Hargunani, R. & Saifuddin, A. The lumbar high-intensity zone: 20 years on. Clin. Radiol. 69, 551–558 (2014).
pubmed: 24613582 doi: 10.1016/j.crad.2013.12.012
Ito, M. et al. Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 23, 1252–1258 (1998). discussion 9–60.
pubmed: 9636979 doi: 10.1097/00007632-199806010-00016
Iatridis, J. C., Nicoll, S. B., Michalek, A. J., Walter, B. A. & Gupta, M. S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13, 243–262 (2013).
pubmed: 23369494 pmcid: 3612376 doi: 10.1016/j.spinee.2012.12.002
Galbusera, F. et al. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23, S324–S332 (2014).
pubmed: 24482074
Niosi, C. A. & Oxland, T. R. Degenerative mechanics of the lumbar spine. Spine J. 4, 202s–208ss (2004).
pubmed: 15541668 doi: 10.1016/j.spinee.2004.07.013
Hristova, G. I. et al. Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. Soc. 29, 1888–1895 (2011).
doi: 10.1002/jor.21456
Roberts, S., Menage, J. & Eisenstein, S. M. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J. Orthop. Res. Soc. 11, 747–757 (1993).
doi: 10.1002/jor.1100110517
Krzyzanowska, A. K. et al. Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1.2021. Sci. Rep. 11, 8271 (2021).
pubmed: 33859255 pmcid: 8050288 doi: 10.1038/s41598-021-87665-2
Weinberger, A. & Myers, A. R. Intervertebral disc calcification in adults: a review. Semin. Arthritis Rheum. 8, 69–75 (1978).
pubmed: 358398 doi: 10.1016/0049-0172(78)90035-5
Sandstrom, C. Calcifications of the intervertebral discs and the relationship between various types of calcifications in the soft tissues of the body. Acta Radiol. 36, 217–233 (1951).
pubmed: 14894283 doi: 10.3109/00016925109176980
Chanchairujira, K. et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230, 499–503 (2004).
pubmed: 14752191 doi: 10.1148/radiol.2302011842
Castriota-Scanderbeg A., Dallapiccola B. Abnormal Skeletal Phenotypes: From Simple Signs to Complex Diagnoses (Springer, 2005).
Sieroń, D. et al. Intervertebral disc calcification in children: case description and review of relevant literature. Pol. J. Radiol. 78, 78–80 (2013).
pubmed: 23493855 pmcid: 3596152 doi: 10.12659/PJR.883773
Ahemad, A. M., Dasgupta, B. & Jagiasi, J. Intervertebral disc calcification in a child. Indian J. Orthop. 42, 480–481 (2008).
pubmed: 19753241 pmcid: 2740342 doi: 10.4103/0019-5413.43401
Mizukawa, K., Kobayashi, T., Yamada, N. & Hirota, T. Intervertebral disc calcification with ossification of the posterior longitudinal ligament. Pediatr. Int. 59, 622–624 (2017).
pubmed: 28326638 doi: 10.1111/ped.13243
Lernout, C., Haas, H., Rubio, A. & Griffet, J. Pediatric intervertebral disk calcification in childhood: three case reports and review of literature. Childs Nerv. Syst. 25, 1019–1023 (2009).
pubmed: 19424706 doi: 10.1007/s00381-009-0869-8
Coppa, V. et al. Pediatric intervertebral disc calcification: case series and systematic review of the literature. J. Pediatr. Orthop. B 29, 590–598 (2020).
pubmed: 31021897 doi: 10.1097/BPB.0000000000000638
Beluffi, G., Fiori, P. & Sileo, C. Intervertebral disc calcifications in children. Radiol. Med. 114, 331–341 (2009).
pubmed: 19274446 doi: 10.1007/s11547-009-0368-8
Gerlach, R. et al. Intervertebral disc calcification in childhood — a case report and review of the literature. Acta Neurochir. 143, 89–93 (2001).
pubmed: 11345723 doi: 10.1007/s007010170143
Dushnicky, M. J., Okura, H., Shroff, M., Laxer, R. M. & Kulkarni, A. V. Pediatric idiopathic intervertebral disc calcification: single-center series and review of the literature. J. Pediatr. 206, 212–216 (2019).
pubmed: 30466792 doi: 10.1016/j.jpeds.2018.10.058
Sato, S. et al. The distinct role of the Runx proteins in chondrocyte differentiation and intervertebral disc degeneration: findings in murine models and in human disease. Arthritis Rheum. 58, 2764–2775 (2008).
pubmed: 18759297 doi: 10.1002/art.23805
Haschtmann, D., Ferguson, S. J. & Stoyanov, J. V. B. M. P.-2. and TGF-beta3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J. 21, 1724–1733 (2012).
pubmed: 22639297 pmcid: 3459107 doi: 10.1007/s00586-012-2371-3
Wang, G., Kang, Y., Chen, F. & Wang, B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv. Syst. 32, 381–386 (2016).
pubmed: 26210494 doi: 10.1007/s00381-015-2840-1
Cheng, X. G. et al. Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skeletal Radiol. 25, 231–235 (1996).
pubmed: 8741057 doi: 10.1007/s002560050070
Chou, C. W. Pathological studies on calcification of the intervertebral discs. Nihon Seikeigeka Gakkai Zasshi 56, 331–345 (1982).
pubmed: 7097096
Bangert, B. A. et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195, 437–443 (1995).
pubmed: 7724763 doi: 10.1148/radiology.195.2.7724763
Tyrrell, P. N., Davies, A. M., Evans, N. & Jubb, R. W. Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin. Radiol. 50, 377–383 (1995).
pubmed: 7789021 doi: 10.1016/S0009-9260(05)83134-4
Malghem, J. et al. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skeletal Radiol. 34, 80–86 (2005).
pubmed: 15480646 doi: 10.1007/s00256-004-0843-1
Blandino, A., Longo, M., Loria, G., Gaeta, M. & Pandolfo, I. The fatty disc: an unusual cause of bright intervertebral disc on T1-weighted conventional spin-echo MR: a case report. J. Neuroradiol. 10, 619–621 (1997).
Stigen, Ø., Ciasca, T. & Kolbjørnsen, Ø. Calcification of extruded intervertebral discs in dachshunds: a radiographic, computed tomographic and histopathological study of 25 cases. Acta Vet. Scand. 61, 13 (2019).
pubmed: 30849997 pmcid: 6408767 doi: 10.1186/s13028-019-0448-2
Shao, J. et al. Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet. Disord. 17, 191 (2016).
pubmed: 27495942 pmcid: 4974757 doi: 10.1186/s12891-016-1015-x
Karamouzian, S. et al. Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine 35, 881–886 (2010).
pubmed: 20354479 doi: 10.1097/BRS.0b013e3181b9c986
Takae, R. et al. Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc. Spine 24, 1397–1401 (1999).
pubmed: 10423782 doi: 10.1097/00007632-199907150-00002
Wang, Z., Hutton, W. C. & Yoon, S. T. ISSLS Prize winner: effect of link protein peptide on human intervertebral disc cells. Spine 38, 1501–1507 (2013).
pubmed: 23370687 doi: 10.1097/BRS.0b013e31828976c1
Bach, F. C. et al. Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine 2, e1071 (2019).
pubmed: 31891120 pmcid: 6920702 doi: 10.1002/jsp2.1071
Girodias, J. B., Azouz, E. M. & Marton, D. Intervertebral disk space calcification. A report of 51 children with a review of the literature. Pediatr. Radiol. 21, 541–546 (1991).
pubmed: 1815170 doi: 10.1007/BF02012591
Bertram, H. et al. Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem. Biophys. Res. Commun. 342, 963–972 (2006).
pubmed: 16598853 doi: 10.1016/j.bbrc.2006.02.048
Akhtar, S., Davies, J. R. & Caterson, B. Ultrastructural immunolocalization of alpha-elastin and keratan sulfate proteoglycan in normal and scoliotic lumbar disc. Spine 30, 1762–1769 (2005).
pubmed: 16094279 doi: 10.1097/01.brs.0000171912.44625.29
Meir, A., McNally, D. S., Fairbank, J. C., Jones, D. & Urban, J. P. The internal pressure and stress environment of the scoliotic intervertebral disc — a review. Proc. Inst. Mech. Eng. H 222, 209–219 (2008).
pubmed: 18441756 doi: 10.1243/09544119JEIM303
Illien-Junger, S. et al. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell Mater. 32, 257–270 (2016).
pubmed: 27858401 pmcid: 5482230 doi: 10.22203/eCM.v032a17
Iatridis, J. C. & ap Gwynn, I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37, 1165–1175 (2004).
pubmed: 15212921 pmcid: 7212828 doi: 10.1016/j.jbiomech.2003.12.026
Roberts, S., Urban, J. P. G., Evans, H. & Eisenstein, S. M. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21, 415–420 (1996).
pubmed: 8658243 doi: 10.1097/00007632-199602150-00003
Benneker, L. M., Heini, P. F., Alini, M., Anderson, S. E. & Ito, K. 2004 Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30, 167–173 (2005).
pubmed: 15644751 doi: 10.1097/01.brs.0000150833.93248.09
Zehra, U., Robson-Brown, K., Adams, M. A. & Dolan, P. Porosity and thickness of the vertebral endplate depend on local mechanical loading. Spine 40, 1173–1180 (2015).
pubmed: 25893360 doi: 10.1097/BRS.0000000000000925
Rodriguez, A. G. et al. Morphology of the human vertebral endplate. J. Orthop. Res. 30, 280–287 (2012).
pubmed: 21812023 doi: 10.1002/jor.21513
Stokes, I. A. & Iatridis, J. C. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29, 2724–2732 (2004).
pubmed: 15564921 pmcid: 7173624 doi: 10.1097/01.brs.0000146049.52152.da
Novais, E. J. et al. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, e13148 (2020).
pubmed: 32319726 pmcid: 7253061 doi: 10.1111/acel.13148
Wu, J., Wu, D., Guo, K., Yuan, F. & Ran, B. OPN polymorphism is associated with the susceptibility to cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell. Physiol. Biochem. 34, 565–574 (2014).
pubmed: 25116355 doi: 10.1159/000363023
Gao, S. G. et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18, 82–87 (2010).
pubmed: 19747583 doi: 10.1016/j.joca.2009.07.009
Mogensen, M. S. et al. Genome-wide association study in Dachshund: identification of a major locus affecting intervertebral disc calcification. J. Hered. https://doi.org/10.1093/jhered/esr021 (2011).
doi: 10.1093/jhered/esr021 pubmed: 21846751
Mogensen, M. S. et al. Validation of genome-wide intervertebral disk calcification associations in dachshund and further investigation of the chromosome 12 susceptibility locus. Front Genet https://doi.org/10.3389/fgene.2012.00225 (2012).
doi: 10.3389/fgene.2012.00225 pubmed: 23125846 pmcid: 3485664
Huang, H. & Trussell, L. O. KCNQ5 channels control resting properties and release probability of a synapse. Nat. Neurosci. 14, 840–847 (2011).
pubmed: 21666672 pmcid: 3133966 doi: 10.1038/nn.2830
Jensen, V. F., Beck, S., Christensen, K. A. & Arnbjerg, J. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds. J. Am. Vet. Med. Assoc. 233, 1090–1095 (2008).
pubmed: 18828719 doi: 10.2460/javma.233.7.1090
Rohdin, C., Jeserevic, J., Viitmaa, R. & Cizinauskas, S. Prevalence of radiographic detectable intervertebral disc calcifications in Dachshunds surgically treated for disc extrusion. Acta Vet. Scand. 52, 24 (2010).
pubmed: 20398282 pmcid: 2873269 doi: 10.1186/1751-0147-52-24
Feinberg, J., Boachie-Adjei, O., Bullough, P. G. & Boskey, A. L. The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin. Orthop. Relat. Res. 254, 303–310 (1990).
doi: 10.1097/00003086-199005000-00046
Brodeur, M. R. et al. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One 9, e85922 (2014).
pubmed: 24465790 pmcid: 3897559 doi: 10.1371/journal.pone.0085922
Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).
pubmed: 24176735 doi: 10.1016/j.jbspin.2013.09.007
Han, Y. et al. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: implications for disc degeneration. Biochem. Biophys. Res. Commun. 516, 1026–1032 (2019).
pubmed: 28342871 doi: 10.1016/j.bbrc.2017.03.111
Illien-Junger, S. et al. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice. PLoS One 10, e0116625 (2015).
pubmed: 25668621 pmcid: 4323205 doi: 10.1371/journal.pone.0116625
Illien-Junger, S. et al. Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PLoS One 8, e64302 (2013).
pubmed: 23691192 pmcid: 3656842 doi: 10.1371/journal.pone.0064302
Bessueille, L. & Magne, D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol. Life Sci. 72, 2475–2489 (2015).
pubmed: 25746430 doi: 10.1007/s00018-015-1876-4
Joshi, F. R. et al. Does vascular calcification accelerate inflammation? J. Am. Coll. Cardiol. 67, 69–78 (2016).
pubmed: 26764069 doi: 10.1016/j.jacc.2015.10.050
Raggi, P. Inflammation and calcification: the chicken or the hen? Atherosclerosis 238, 173–174 (2015).
pubmed: 25525745 doi: 10.1016/j.atherosclerosis.2014.10.025
Ikeda, K. et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 425, 39–44 (2012).
pubmed: 22820183 doi: 10.1016/j.bbrc.2012.07.045
Peng, B. et al. The pathogenesis of discogenic low back pain. J. Bone Joint Surg. Br. 87, 62–67 (2005).
pubmed: 15686239 doi: 10.1302/0301-620X.87B1.15708
Saifuddin, A., Mitchell, R. & Taylor, B. A. Extradural inflammation associated with annular tears: demonstration with gadolinium-enhanced lumbar spine MRI. Eur. Spine J. 8, 34–39 (1999).
pubmed: 10190852 pmcid: 3611123 doi: 10.1007/s005860050124
Grant, M. P. et al. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cell Mater. 32, 137–151 (2016).
pubmed: 27452962 doi: 10.22203/eCM.v032a09
Canaff, L. & Hendy, G. N. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1β. Role of the NF-κB pathway and κB elements. J. Biol. Chem. 280, 14177–14188 (2005).
pubmed: 15684428 doi: 10.1074/jbc.M408587200
Shao, J., Yu, M., Jiang, L., Wu, F. & Liu, X. Sequencing and bioinformatics analysis of the differentially expressed genes in herniated discs with or without calcification. Int. J. Mol. Med. 39, 81–90 (2017).
pubmed: 27959380 doi: 10.3892/ijmm.2016.2821
Zehra, U. et al. Spinopelvic alignment predicts disc calcification, displacement, and Modic changes: evidence of an evolutionary etiology for clinically-relevant spinal phenotypes. JOR Spine 3, e1083 (2020).
pubmed: 32211594 pmcid: 7084054 doi: 10.1002/jsp2.1083
Du, G. et al. Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo. Am. J. Sports Med. 44, 652–663 (2016).
pubmed: 26792705 pmcid: 4775287 doi: 10.1177/0363546515621285
Roberts, S., Bains, M. A., Kwan, A., Menage, J. & Eisenstein, S. M. Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem. J. 30, 89–95 (1998).
pubmed: 10192549 doi: 10.1023/A:1003278915981
Shen, G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofac. Res. 8, 11–17 (2005).
pubmed: 15667640 doi: 10.1111/j.1601-6343.2004.00308.x
Jin, L. et al. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 9, e96519 (2014).
pubmed: 24796761 pmcid: 4010482 doi: 10.1371/journal.pone.0096519
Feng, G. et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J. Bone Joint Surg. Am. 92, 675–685 (2010).
pubmed: 20194326 doi: 10.2106/JBJS.H.01672
Hsu, H. H. Mechanisms of initiating calcification. ATP-stimulated Ca- and Pi-depositing activity of isolated matrix vesicles. Int. J. Biochem. 26, 1351–1356 (1994).
pubmed: 7890114 doi: 10.1016/0020-711X(94)90177-5
Ornoy, A. & Langer, Y. Scanning electron microscopy studies on the origin and structure of matrix vesicles in epiphyseal cartilage from young rats. Isr. J. Med. Sci. 14, 745–752 (1978).
pubmed: 681166
Anderson, H. C. Mechanism of mineral formation in bone. Lab. Invest. 60, 320–330 (1989).
pubmed: 2648065
Wuthier, R. E. et al. Mechanism of matrix vesicle calcification: characterization of ion channels and the nucleational core of growth plate vesicles. Bone Miner. 17, 290–295 (1992).
pubmed: 1377071 doi: 10.1016/0169-6009(92)90753-Z
Balcerzak, M. et al. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim. Pol. 50, 1019–1038 (2003).
pubmed: 14739992 doi: 10.18388/abp.2003_3629
Ali, S. Y., Sajdera, S. W. & Anderson, H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl Acad. Sci. USA 67, 1513–1520 (1970).
pubmed: 5274475 pmcid: 283384 doi: 10.1073/pnas.67.3.1513
Wu, L. N., Genge, B. R., Lloyd, G. C. & Wuthier, R. E. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J. Biol. Chem. 266, 1195–1203 (1991).
pubmed: 1845989 doi: 10.1016/S0021-9258(17)35301-2
Bonucci, E. Comments on the ultrastructural morphology of the calcification process: an attempt to reconcile matrix vesicles, collagen fibrils, and crystal ghosts. Bone Miner. 17, 219–222 (1992).
pubmed: 1611310 doi: 10.1016/0169-6009(92)90740-5
Lin, Z. et al. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 88, 47–55 (2016).
pubmed: 27080510 pmcid: 4899086 doi: 10.1016/j.bone.2016.03.018
Shapiro, I. M., Landis, W. J. & Risbud, M. V. Matrix vesicles: are they anchored exosomes? Bone 79, 29–36 (2015).
pubmed: 25980744 pmcid: 4501874 doi: 10.1016/j.bone.2015.05.013
Qin, Y., Sun, R., Wu, C., Wang, L. & Zhang, C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int. J. Mol. Sci. 17, 712 (2016).
pmcid: 4881534 doi: 10.3390/ijms17050712
Cui, Y., Luan, J., Li, H., Zhou, X. & Han, J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 590, 185–192 (2016).
pubmed: 26763102 doi: 10.1002/1873-3468.12024
Bach, F. C. et al. Soluble and pelletable factors in porcine, canine and human notochordal cell-conditioned medium: implications for IVD regeneration. Eur. Cell Mater. 32, 163–180 (2016).
pubmed: 27572543 doi: 10.22203/eCM.v032a11
Bach, F. et al. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells. Oncotarget 8, 88845–88856 (2017).
pubmed: 29179481 pmcid: 5687651 doi: 10.18632/oncotarget.21483
Lu, K. et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 8, 108 (2017).
pubmed: 28486958 pmcid: 5424403 doi: 10.1186/s13287-017-0563-9
Christoffersen, J. & Landis, W. J. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat. Rec. 230, 435–450 (1991).
pubmed: 1928750 doi: 10.1002/ar.1092300402
Miller, G. J. & DeMarzo, A. M. Ultrastructural localization of matrix vesicles and alkaline phosphatase in the Swarm rat chondrosarcoma: their role in cartilage calcification. Bone 9, 235–241 (1988).
pubmed: 3166840 doi: 10.1016/8756-3282(88)90036-1
Borras, T. & Comes, N. Evidence for a calcification process in the trabecular meshwork. Exp. Eye Res. 88, 738–746 (2009).
pubmed: 19084518 doi: 10.1016/j.exer.2008.11.027
Kim, E. E. & Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991).
pubmed: 2010919 doi: 10.1016/0022-2836(91)90724-K
Narisawa, S., Frohlander, N. & Millan, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).
pubmed: 9056646 doi: 10.1002/(SICI)1097-0177(199703)208:3<432::AID-AJA13>3.0.CO;2-1
Anderson, H. C. et al. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am. J. Pathol. 164, 841–847 (2004).
pubmed: 14982838 pmcid: 1613274 doi: 10.1016/S0002-9440(10)63172-0
Chang, W. et al. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 140, 1911–1919 (1999).
pubmed: 10098531 doi: 10.1210/endo.140.4.6639
Rodriguez, L., Cheng, Z., Chen, T. H., Tu, C. & Chang, W. Extracellular calcium and parathyroid hormone-related peptide signaling modulate the pace of growth plate chondrocyte differentiation. Endocrinology 146, 4597–4608 (2005).
pubmed: 16099862 doi: 10.1210/en.2005-0437
Dvorak, M. M. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl Acad. Sci. USA 101, 5140–5145 (2004).
pubmed: 15051872 pmcid: 387387 doi: 10.1073/pnas.0306141101
Yuan, F. L. et al. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by regulating PPi metabolism. J. Cell. Mol. Med. 23, 3665–3675 (2019).
pubmed: 30892812 pmcid: 6484318 doi: 10.1111/jcmm.14268
Ohshima, H. & Urban, J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine 17, 1079–1082 (1992).
pubmed: 1411761 doi: 10.1097/00007632-199209000-00012
Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 15, 33–51 (2018).
pubmed: 30443043 pmcid: 6535143 doi: 10.1038/s41574-018-0115-0
Brown, E. M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 333–343 (2013).
pubmed: 23856263 doi: 10.1016/j.beem.2013.02.006
Stock, J. L. et al. Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis. J. Clin. Endocrinol. Metab. 84, 3036–3040 (1999).
pubmed: 10487661
Burton, D. W. et al. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13, 395–404 (2005).
pubmed: 15882563 doi: 10.1016/j.joca.2005.01.002
Hough, T. A. et al. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc. Natl Acad. Sci. USA 101, 13566–13571 (2004).
pubmed: 15347804 pmcid: 518795 doi: 10.1073/pnas.0405516101
Fields, A. J., Rodriguez, D., Gary, K. N., Liebenberg, E. C. & Lotz, J. C. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J. Orthop. Res. 32, 245–252 (2014).
pubmed: 24273192 doi: 10.1002/jor.22516
Rodriguez, A. G. et al. Human disc nucleus properties and vertebral endplate permeability. Spine 36, 512–520 (2011).
pubmed: 21240044 pmcid: 3062730 doi: 10.1097/BRS.0b013e3181f72b94
Yue, B. et al. Thoracic intervertebral disc calcification and herniation in adults: a report of two cases. Eur. Spine J. 25, 118–123 (2016).
pubmed: 26329651 doi: 10.1007/s00586-015-4214-5
Choi, J. W. et al. Transdural approach for calcified central disc herniations of the upper lumbar spine. Technical note. J. Neurosurg. Spine 7, 370–374 (2007).
pubmed: 17877277 doi: 10.3171/SPI-07/09/370
Dabo, X. et al. The clinical results of percutaneous endoscopic interlaminar discectomy (PEID) in the treatment of calcified lumbar disc herniation: a case-control study. Pain Phys. 19, 69–76 (2016).
doi: 10.36076/ppj/2016.19.69
Court, C., Mansour, E. & Bouthors, C. Thoracic disc herniation: surgical treatment. Orthop. Traumatol. Surg. Res. 104, S31–S40 (2018).
pubmed: 29225115 doi: 10.1016/j.otsr.2017.04.022
Yu, L. et al. Removal of calcified lumbar disc herniation with endoscopic-matched ultrasonic osteotome — our preliminary experience. Br. J. Neurosurg. 34, 80–85 (2020).
pubmed: 31718310 doi: 10.1080/02688697.2019.1687850
Nogueira-Barbosa, M. H., da Silva Herrero, C. F., Pasqualini, W. & Defino, H. L. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal Radiol. 42, 1161–1164 (2013).
pubmed: 23532559 doi: 10.1007/s00256-013-1602-y
Rodacki, M. A., Castro, C. E. & Castro, D. S. Diffuse vertebral body edema due to calcified intraspongious disk herniation. Neuroradiology 47, 316–321 (2005).
pubmed: 15891876 doi: 10.1007/s00234-004-1262-7
Azizaddini, S., Arefanian, S., Redjal, N., Walcott, B. P. & Mollahoseini, R. Adult acute calcific discitis confined to the nucleus pulposus in the cervical spine: case report. J. Neurosurg. Spine 19, 170–173 (2013).
pubmed: 23746089 doi: 10.3171/2013.4.SPINE12906
Crockett, M. T., Kelly, B. S., van Baarsel, S. & Kavanagh, E. C. Modic type 1 vertebral endplate changes: injury, inflammation, or infection? Am. J. Roentgenol. 209, 167–170 (2017).
doi: 10.2214/AJR.16.17403
Pang, H. et al. The UTE Disc Sign on MRI: a novel imaging biomarker associated with degenerative spine changes, low back pain and disability. Spine 43, 503–511 (2017).
doi: 10.1097/BRS.0000000000002369
Eyvazov, K. et al. The association of lumbar curve magnitude and spinal range of motion in adolescent idiopathic scoliosis: a cross-sectional study. 2017. BMC Musculoskelet. Disord. 18, 51 (2017).
pubmed: 28143455 pmcid: 5282845 doi: 10.1186/s12891-017-1423-6
Samartzis, D. et al. Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes. PLoS One 10, e0120302 (2015).
pubmed: 26270549 pmcid: 4535921 doi: 10.1371/journal.pone.0120302
Yao, G. et al. Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine 42, 1622–1628 (2017).
pubmed: 27997505 doi: 10.1097/BRS.0000000000002046
Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M. & Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine 35, E475–E480 (2010).
pubmed: 20421856 doi: 10.1097/BRS.0b013e3181cd2cf4
Orozco, L. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822–828 (2011).
pubmed: 21792091 doi: 10.1097/TP.0b013e3182298a15
van Gool, S. A. et al. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One 7, e44561 (2012).
pubmed: 23144774 pmcid: 3489884 doi: 10.1371/journal.pone.0044561
Vickers, L., Thorpe, A. A., Snuggs, J., Sammon, C. & Le Maitre, C. L. Mesenchymal stem cell therapies for intervertebral disc degeneration: Consideration of the degenerate niche. JOR Spine 2, e1055 (2019).
pubmed: 31463465 pmcid: 6686825 doi: 10.1002/jsp2.1055
Vadala, G. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348–355 (2012).
pubmed: 21671407 doi: 10.1002/term.433
Liu, S. et al. Susceptibility weighted imaging: current status and future directions. NMR Biomed. https://doi.org/10.1002/nbm.3552 (2017).
doi: 10.1002/nbm.3552 pubmed: 29285809 pmcid: 5841465
Saavedra-Pozo, F. M., Deusdara, R. A. & Benzel, E. C. Adjacent segment disease perspective and review of the literature. Ochsner J. 14, 78–83 (2014).
pubmed: 24688337 pmcid: 3963057
Eskola, P. J. et al. Genetic association studies in lumbar disc degeneration: a systematic review. PLoS One 7, e49995 (2012).
pubmed: 23185509 pmcid: 3503778 doi: 10.1371/journal.pone.0049995
Mallow, G. M. et al. Intelligence-based spine care model: a new era of research and clinical decision-making. Glob. Spine J. 11, 135–145 (2021).
doi: 10.1177/2192568220973984
Samartzis, D. et al. Precision spine care: a new era of discovery, innovation, and global impact. Glob. Spine J. 8, 321–322 (2018).
doi: 10.1177/2192568218774044

Auteurs

Uruj Zehra (U)

Department of Anatomy, University of Health Sciences, Lahore, Pakistan.

Marianna Tryfonidou (M)

Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

James C Iatridis (JC)

Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Svenja Illien-Jünger (S)

Emory University School of Medicine, Atlanta, GA, USA.

Fackson Mwale (F)

Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital and Department of Surgery, McGill University, Montreal, QC, Canada.

Dino Samartzis (D)

Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA. dino_samartzis@rush.edu.
International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA. dino_samartzis@rush.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH