Detection of Dental Diseases through X-Ray Images Using Neural Search Architecture Network.
Journal
Computational intelligence and neuroscience
ISSN: 1687-5273
Titre abrégé: Comput Intell Neurosci
Pays: United States
ID NLM: 101279357
Informations de publication
Date de publication:
2022
2022
Historique:
received:
17
02
2022
revised:
24
03
2022
accepted:
12
04
2022
entrez:
10
5
2022
pubmed:
11
5
2022
medline:
12
5
2022
Statut:
epublish
Résumé
An important aspect of the diagnosis procedure in daily clinical practice is the analysis of dental radiographs. This is because the dentist must interpret different types of problems related to teeth, including the tooth numbers and related diseases during the diagnostic process. For panoramic radiographs, this paper proposes a convolutional neural network (CNN) that can do multitask classification by classifying the X-ray images into three classes: cavity, filling, and implant. In this paper, convolutional neural networks are taken in the form of a NASNet model consisting of different numbers of max-pooling layers, dropout layers, and activation functions. Initially, the data will be augmented and preprocessed, and then, the construction of a multioutput model will be done. Finally, the model will compile and train the model; the evaluation parameters used for the analysis of the model are loss and the accuracy curves. The model has achieved an accuracy of greater than 96% such that it has outperformed other existing algorithms.
Identifiants
pubmed: 35535186
doi: 10.1155/2022/3500552
pmc: PMC9078756
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3500552Informations de copyright
Copyright © 2022 Abdullah S. AL-Malaise AL-Ghamdi et al.
Déclaration de conflit d'intérêts
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Références
Oral Radiol. 2021 Jan;37(1):13-19
pubmed: 31893343
Comput Med Imaging Graph. 2018 Sep;68:61-70
pubmed: 30056291
Comput Biol Med. 2017 Jan 1;80:24-29
pubmed: 27889430
Comput Biol Med. 2017 Jan 1;80:65-76
pubmed: 27915125
Sci Rep. 2019 Mar 7;9(1):3840
pubmed: 30846758
Acta Inform Med. 2012 Mar;20(1):47-55
pubmed: 23322955
World J Radiol. 2014 Oct 28;6(10):794-807
pubmed: 25349663
Diagn Interv Radiol. 2021 Jan;27(1):20-27
pubmed: 32815519
Glob Transit. 2020;2:283-292
pubmed: 33205037
Oral Radiol. 2020 Oct;36(4):337-343
pubmed: 31535278
Lancet Oncol. 2019 May;20(5):e253-e261
pubmed: 31044723
Dentomaxillofac Radiol. 2019 May;48(4):20180051
pubmed: 30835551
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:1003-1006
pubmed: 29062466
Int J Med Inform. 2018 Sep;117:44-54
pubmed: 30032964
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495
pubmed: 28060704
Anthropol Anz. 2013;70(3):331-45
pubmed: 24466642