Regulation of osteoclast-mediated bone resorption by microRNA.
Bone resorption
MicroRNA
Osteoclast
Signaling pathways
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
10 May 2022
10 May 2022
Historique:
received:
04
01
2022
accepted:
08
04
2022
revised:
15
03
2022
entrez:
10
5
2022
pubmed:
11
5
2022
medline:
14
5
2022
Statut:
epublish
Résumé
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Identifiants
pubmed: 35536437
doi: 10.1007/s00018-022-04298-y
pii: 10.1007/s00018-022-04298-y
doi:
Substances chimiques
MicroRNAs
0
RANK Ligand
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
287Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Inoue K, Nakano S, Zhao B (2019) Osteoclastic microRNAs and their translational potential in skeletal diseases. Semin Immunopathol 41(5):573–582. https://doi.org/10.1007/s00281-019-00761-4
doi: 10.1007/s00281-019-00761-4
pubmed: 31591677
pmcid: 7027942
Goldring SR, Purdue PE, Crotti TN et al (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2012-202199
doi: 10.1136/annrheumdis-2012-202199
pubmed: 24285494
Sozen T, Ozisik L, Basaran NC (2017) An overview and management of osteoporosis. Eur J Rheumatol 4(1):46–56. https://doi.org/10.5152/eurjrheum.2016.048
doi: 10.5152/eurjrheum.2016.048
pubmed: 28293453
Zhao H, Lu A, He X (2020) Roles of MicroRNAs in bone destruction of rheumatoid arthritis. Front Cell Dev Biol 8:600867. https://doi.org/10.3389/fcell.2020.600867
doi: 10.3389/fcell.2020.600867
pubmed: 33330493
pmcid: 7710907
Boyce BF, Li J, Xing L et al (2018) Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Front Immunol 9:2263. https://doi.org/10.3389/fimmu.2018.02263
doi: 10.3389/fimmu.2018.02263
pubmed: 30323820
pmcid: 6172306
Wang Y, Grainger DW (2012) RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 64(12):1341–1357. https://doi.org/10.1016/j.addr.2011.09.002
doi: 10.1016/j.addr.2011.09.002
pubmed: 21945356
Javed A, Chen H, Ghori FY (2010) Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am 22(3):283–293. https://doi.org/10.1016/j.coms.2010.05.001
doi: 10.1016/j.coms.2010.05.001
pubmed: 20713262
pmcid: 2923651
Nakashima T, Takayanagi H (2011) New regulation mechanisms of osteoclast differentiation. Ann N Y Acad Sci 1240:E13–E18. https://doi.org/10.1111/j.1749-6632.2011.06373.x
doi: 10.1111/j.1749-6632.2011.06373.x
pubmed: 22360322
Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23(11):582–590. https://doi.org/10.1016/j.tem.2012.05.005
doi: 10.1016/j.tem.2012.05.005
pubmed: 22705116
Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 92(10):860–867. https://doi.org/10.1177/0022034513500306
doi: 10.1177/0022034513500306
pubmed: 23906603
pmcid: 3775372
Lian JB, Stein GS, van Wijnen AJ et al (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8(4):212–227. https://doi.org/10.1038/nrendo.2011.234
doi: 10.1038/nrendo.2011.234
pubmed: 22290358
pmcid: 3589914
Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799(10–12):694–701. https://doi.org/10.1016/j.bbagrm.2010.05.005
doi: 10.1016/j.bbagrm.2010.05.005
pubmed: 20493980
Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108. https://doi.org/10.1038/nrg2504
doi: 10.1038/nrg2504
pubmed: 19148191
pmcid: 2724769
Mizoguchi F, Izu Y, Hayata T et al (2010) Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109(5):866–875. https://doi.org/10.1002/jcb.22228
doi: 10.1002/jcb.22228
pubmed: 20039311
Sugatani T, Hildreth BE 3rd, Toribio RE et al (2014) Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity. J Cell Biochem 115(6):1043–1047. https://doi.org/10.1002/jcb.24759
doi: 10.1002/jcb.24759
pubmed: 24420069
pmcid: 4079251
Pi C, Li YP, Zhou X et al (2015) The expression and function of microRNAs in bone homeostasis. Front Biosci (Landmark Ed) 20:119–138. https://doi.org/10.2741/4301
doi: 10.2741/4301
van der Eerden BC (2014) MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys 561:46–55. https://doi.org/10.1016/j.abb.2014.04.016
doi: 10.1016/j.abb.2014.04.016
pubmed: 24832391
Lozano C, Duroux-Richard I, Firat H et al (2019) MicroRNAs: key regulators to understand osteoclast differentiation? Front Immunol 10:375. https://doi.org/10.3389/fimmu.2019.00375
doi: 10.3389/fimmu.2019.00375
pubmed: 30899258
pmcid: 6416164
Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40(10):706–713. https://doi.org/10.14348/molcells.2017.0225
doi: 10.14348/molcells.2017.0225
pubmed: 29047262
pmcid: 5682248
Chen C, Liu YM, Fu BL et al (2021) MicroRNA-21: an emerging player in bone diseases. Front Pharmacol 12:722804. https://doi.org/10.3389/fphar.2021.722804
doi: 10.3389/fphar.2021.722804
pubmed: 34557095
pmcid: 8452984
Husain A, Jeffries MA (2017) Epigenetics and bone remodeling. Curr Osteoporos Rep 15(5):450–458. https://doi.org/10.1007/s11914-017-0391-y
doi: 10.1007/s11914-017-0391-y
pubmed: 28808893
pmcid: 5710824
Boyce BF, Rosenberg E, de Papp AE et al (2012) The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest 42(12):1332–1341. https://doi.org/10.1111/j.1365-2362.2012.02717.x
doi: 10.1111/j.1365-2362.2012.02717.x
pubmed: 22998735
Gennari L, Bianciardi S, Merlotti D (2017) MicroRNAs in bone diseases. Osteoporos Int 28(4):1191–1213. https://doi.org/10.1007/s00198-016-3847-5
doi: 10.1007/s00198-016-3847-5
pubmed: 27904930
Tanaka S, Miyazaki T, Fukuda A et al (2006) Molecular mechanism of the life and death of the osteoclast. Ann N Y Acad Sci 1068:180–186. https://doi.org/10.1196/annals.1346.020
doi: 10.1196/annals.1346.020
pubmed: 16831917
Boyce BF (2013) Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 28(4):711–722. https://doi.org/10.1002/jbmr.1885
doi: 10.1002/jbmr.1885
pubmed: 23436579
Boyce BF, Yao Z, Xing L (2009) Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr 19(3):171–180. https://doi.org/10.1615/critreveukargeneexpr.v19.i3.10
doi: 10.1615/critreveukargeneexpr.v19.i3.10
pubmed: 19883363
pmcid: 2856465
Shalev M, Arman E, Stein M et al (2021) PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 288(15):4702–4723. https://doi.org/10.1111/febs.15778
doi: 10.1111/febs.15778
pubmed: 33605542
Wagner EF, Karsenty G (2001) Genetic control of skeletal development. Curr Opin Genet Dev 11(5):527–532. https://doi.org/10.1016/s0959-437x(00)00228-8
doi: 10.1016/s0959-437x(00)00228-8
pubmed: 11532394
Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018
doi: 10.1016/j.abb.2008.03.018
pubmed: 18395508
pmcid: 2413418
Delgado-Calle J, Garmilla P, Riancho JA (2012) Do epigenetic marks govern bone mass and homeostasis? Curr Genomics 13(3):252–263. https://doi.org/10.2174/138920212800543129
doi: 10.2174/138920212800543129
pubmed: 23115526
pmcid: 3382279
Gordon JA, Montecino MA, Aqeilan RI et al (2014) Epigenetic pathways regulating bone homeostasis: potential targeting for intervention of skeletal disorders. Curr Osteoporos Rep 12(4):496–506. https://doi.org/10.1007/s11914-014-0240-1
doi: 10.1007/s11914-014-0240-1
pubmed: 25260661
pmcid: 4216616
Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. https://doi.org/10.1038/nrm2632
doi: 10.1038/nrm2632
pubmed: 19165215
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843
doi: 10.1038/nrg2843
pubmed: 20661255
Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117(13):3648–3657. https://doi.org/10.1182/blood-2010-10-311415
doi: 10.1182/blood-2010-10-311415
pubmed: 21273303
pmcid: 3072882
Tang P, Xiong Q, Ge W et al (2014) The role of microRNAs in osteoclasts and osteoporosis. RNA Biol 11(11):1355–1363. https://doi.org/10.1080/15476286.2014.996462
doi: 10.1080/15476286.2014.996462
pubmed: 25692234
Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. https://doi.org/10.1152/physrev.00006.2010
doi: 10.1152/physrev.00006.2010
pubmed: 21742789
Michlewski G, Caceres JF (2019) Post-transcriptional control of miRNA biogenesis. RNA 25(1):1–16. https://doi.org/10.1261/rna.068692.118
doi: 10.1261/rna.068692.118
pubmed: 30333195
pmcid: 6298569
Feng Q, Zheng S, Zheng J (2018) The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. https://doi.org/10.1042/BSR20180453
Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284(7):4667–4678. https://doi.org/10.1074/jbc.M805777200
doi: 10.1074/jbc.M805777200
pubmed: 19059913
pmcid: 2640963
Franceschetti T, Dole NS, Kessler CB et al (2014) Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One 9(9):e107262. https://doi.org/10.1371/journal.pone.0107262
doi: 10.1371/journal.pone.0107262
pubmed: 25222202
pmcid: 4164525
Li H, Wang Z, Fu Q et al (2014) Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19(7):553–556. https://doi.org/10.3109/1354750X.2014.935957
doi: 10.3109/1354750X.2014.935957
pubmed: 25231354
Rossi M, Pitari MR, Amodio N et al (2013) miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol 228(7):1506–1515. https://doi.org/10.1002/jcp.24306
doi: 10.1002/jcp.24306
pubmed: 23254643
Zhao X, Xu D, Li Y et al (2014) MicroRNAs regulate bone metabolism. J Bone Miner Metab 32(3):221–231. https://doi.org/10.1007/s00774-013-0537-7
doi: 10.1007/s00774-013-0537-7
pubmed: 24311309
Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29(2):155–192. https://doi.org/10.1210/er.2007-0014
doi: 10.1210/er.2007-0014
pubmed: 18057140
Xing L, Schwarz EM, Boyce BF (2005) Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev 208:19–29. https://doi.org/10.1111/j.0105-2896.2005.00336.x
doi: 10.1111/j.0105-2896.2005.00336.x
pubmed: 16313338
Zhao B, Ivashkiv LB (2011) Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther 13(4):234. https://doi.org/10.1186/ar3379
doi: 10.1186/ar3379
pubmed: 21861861
pmcid: 3239342
Chen C, Cheng P, Xie H et al (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347. https://doi.org/10.1002/jbmr.2032
doi: 10.1002/jbmr.2032
pubmed: 23821519
Huang MZ, Zhuang Y, Ning X et al (2020) Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. Biosci Rep. https://doi.org/10.1042/BSR20194387
Wang C, He H, Wang L et al (2018) Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK. Biochem Cell Biol 96(5):627–635. https://doi.org/10.1139/bcb-2017-0243
doi: 10.1139/bcb-2017-0243
pubmed: 29334613
Wang W, Qiao SC, Wu XB et al (2021) Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death Dis 12(7):628. https://doi.org/10.1038/s41419-021-03915-1
doi: 10.1038/s41419-021-03915-1
pubmed: 34145224
pmcid: 8213782
Gong M, Ma J, Guillemette R et al (2014) miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 12(1):101–110. https://doi.org/10.1158/1541-7786.MCR-13-0136
doi: 10.1158/1541-7786.MCR-13-0136
pubmed: 23966614
Wang T, Yin H, Wang J et al (2015) MicroRNA-106b inhibits osteoclastogenesis and osteolysis by targeting RANKL in giant cell tumor of bone. Oncotarget 6(22):18980–18996. https://doi.org/10.18632/oncotarget.4223
doi: 10.18632/oncotarget.4223
pubmed: 26053181
pmcid: 4662469
Tao Y, Wang Z, Wang L et al (2017) Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford) 56(10):1804–1813. https://doi.org/10.1093/rheumatology/kex233
doi: 10.1093/rheumatology/kex233
Li W, Wang X, Chang L et al (2019) MiR-377 inhibits wear particle-induced osteolysis via targeting RANKL. Cell Biol Int 43(6):658–668. https://doi.org/10.1002/cbin.11143
doi: 10.1002/cbin.11143
pubmed: 30958621
Gong N, Zhu W, Xu R et al (2020) Keratinocytes-derived exosomal miRNA regulates osteoclast differentiation in middle ear cholesteatoma. Biochem Biophys Res Commun 525(2):341–347. https://doi.org/10.1016/j.bbrc.2020.02.058
doi: 10.1016/j.bbrc.2020.02.058
pubmed: 32093888
Li M, Zhang Z, Gu X et al (2020) MicroRNA-21 affects mechanical force-induced midpalatal suture remodelling. Cell Prolif 53(1):e12697. https://doi.org/10.1111/cpr.12697
doi: 10.1111/cpr.12697
pubmed: 31713930
Pitari MR, Rossi M, Amodio N et al (2015) Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget 6(29):27343–27358. https://doi.org/10.18632/oncotarget.4398
doi: 10.18632/oncotarget.4398
pubmed: 26160841
pmcid: 4694994
Suarjana IN, Isbagio H, Soewondo P et al (2019) The role of serum expression levels of microrna-21 on bone mineral density in hypostrogenic postmenopausal women with osteoporosis: study on level of RANKL, OPG, TGFbeta-1, sclerostin, RANKL/OPG ratio, and physical activity. Acta Med Indones 51(3):245–252
pubmed: 31699948
Chen Y, Wang X, Yang M et al (2018) miR-145–5p increases osteoclast numbers in vitro and aggravates bone erosion in collagen-induced arthritis by targeting osteoprotegerin. Med Sci Monit 24:5292–300. https://doi.org/10.12659/MSM.908219
doi: 10.12659/MSM.908219
pubmed: 30059491
pmcid: 6080580
Han Z, Zhan R, Chen S et al (2020) miR-181b/oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation. J Cell Biochem 121(2):1664–1674. https://doi.org/10.1002/jcb.29401
doi: 10.1002/jcb.29401
pubmed: 31680294
Li G, Liu H, Zhang X et al (2020) The protective effects of microRNA-26a in steroid-induced osteonecrosis of the femoral head by repressing EZH2. Cell Cycle 19(5):551–566. https://doi.org/10.1080/15384101.2020.1717043
doi: 10.1080/15384101.2020.1717043
pubmed: 32054404
pmcid: 7100987
Wang QSX, Chen Y, Chen J, Li Y (2021) Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503–3p/Hpse axis. Acta Histochem. https://doi.org/10.1016/j.acthis.2021.151790
doi: 10.1016/j.acthis.2021.151790
pubmed: 34979374
Guo S, Gu J, Ma J et al (2021) GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity. Theranostics 11(17):8379–8395. https://doi.org/10.7150/thno.58052
doi: 10.7150/thno.58052
pubmed: 34373748
pmcid: 8344011
Li J, Li Y, Wang S et al (2019) miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates. BMB Rep 52(9):572–576
doi: 10.5483/BMBRep.2019.52.9.076
Zhou L, Song HY, Gao LL et al (2019) MicroRNA1005p inhibits osteoclastogenesis and bone resorption by regulating fibroblast growth factor 21. Int J Mol Med 43(2):727–738. https://doi.org/10.3892/ijmm.2018.4017
doi: 10.3892/ijmm.2018.4017
pubmed: 30535435
Chang Y, Yu D, Chu W et al (2020) LncRNA expression profiles and the negative regulation of lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone 130:115072. https://doi.org/10.1016/j.bone.2019.115072
doi: 10.1016/j.bone.2019.115072
pubmed: 31593824
Liu ZZ, Zhang CY, Huang LL et al (2019) Elevated expression of lncRNA SNHG15 in spinal tuberculosis: preliminary results. Eur Rev Med Pharmacol Sci 23(20):9017–9024. https://doi.org/10.26355/eurrev_201910_19303
doi: 10.26355/eurrev_201910_19303
pubmed: 31696491
Ni J, Zhang X, Li J et al (2021) Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis 12(7):662. https://doi.org/10.1038/s41419-021-03928-w
doi: 10.1038/s41419-021-03928-w
pubmed: 34215717
pmcid: 8253828
Franzoso G, Carlson L, Xing L et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24):3482–3496. https://doi.org/10.1101/gad.11.24.3482
doi: 10.1101/gad.11.24.3482
pubmed: 9407039
pmcid: 316809
Xing L, Carlson L, Story B et al (2003) Expression of either NF-kappaB p50 or p52 in osteoclast precursors is required for IL-1-induced bone resorption. J Bone Miner Res 18(2):260–269. https://doi.org/10.1359/jbmr.2003.18.2.260
doi: 10.1359/jbmr.2003.18.2.260
pubmed: 12568403
Boyce BF, Xiu Y, Li J et al (2015) NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol Metab (Seoul) 30(1):35–44. https://doi.org/10.3803/EnM.2015.30.1.35
doi: 10.3803/EnM.2015.30.1.35
Liu J, Li D, Dang L et al (2017) Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 7:40487. https://doi.org/10.1038/srep40487
doi: 10.1038/srep40487
pubmed: 28071724
pmcid: 5223164
Mao Y, Chen Y, Fu Y et al (2020) miR-346-3p promotes osteoclastogenesis via inhibiting TRAF3 gene. In Vitro Cell Dev Biol Anim 56(7):533–542. https://doi.org/10.1007/s11626-020-00479-w
doi: 10.1007/s11626-020-00479-w
pubmed: 32839904
Guo LJ, Liao L, Yang L et al (2014) MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res 321(2):142–152. https://doi.org/10.1016/j.yexcr.2013.12.001
doi: 10.1016/j.yexcr.2013.12.001
pubmed: 24360988
Miao F, Yin BH, Zhang X et al (2020) CircRNA_009934 induces osteoclast bone resorption via silencing miR-5107. Eur Rev Med Pharmacol Sci 24(14):7580–7588. https://doi.org/10.26355/eurrev_202007_22256
doi: 10.26355/eurrev_202007_22256
pubmed: 32744684
Lee Y, Kim HJ, Park CK et al (2013) MicroRNA-124 regulates osteoclast differentiation. Bone 56(2):383–389. https://doi.org/10.1016/j.bone.2013.07.007
doi: 10.1016/j.bone.2013.07.007
pubmed: 23867221
Nakamachi Y, Ohnuma K, Uto K et al (2016) MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis 75(3):601–608. https://doi.org/10.1136/annrheumdis-2014-206417
doi: 10.1136/annrheumdis-2014-206417
pubmed: 25596157
Ohnuma K, Kasagi S, Uto K et al (2019) MicroRNA-124 inhibits TNF-alpha- and IL-6-induced osteoclastogenesis. Rheumatol Int 39(4):689–695. https://doi.org/10.1007/s00296-018-4218-7
doi: 10.1007/s00296-018-4218-7
pubmed: 30547186
Zhao N, Han D, Liu Y et al (2016) DLX3 negatively regulates osteoclastic differentiation through microRNA-124. Exp Cell Res 341(2):166–176. https://doi.org/10.1016/j.yexcr.2016.01.018
doi: 10.1016/j.yexcr.2016.01.018
pubmed: 26836061
Dinesh P, Kalaiselvan S, Sujitha S et al (2020) miR-506-3p alleviates uncontrolled osteoclastogenesis via repression of RANKL/NFATc1 signaling pathway. J Cell Physiol 235(12):9497–9509. https://doi.org/10.1002/jcp.29757
doi: 10.1002/jcp.29757
pubmed: 32372426
Ling L, Hu HL, Liu KY et al (2019) Long noncoding RNA MIRG induces osteoclastogenesis and bone resorption in osteoporosis through negative regulation of miR-1897. Eur Rev Med Pharmacol Sci 23(23):10195–10203. https://doi.org/10.26355/eurrev_201912_19654
doi: 10.26355/eurrev_201912_19654
pubmed: 31841172
Zhang L, Lv Y, Xian G et al (2017) 25-hydroxycholesterol promotes RANKL-induced osteoclastogenesis through coordinating NFATc1 and Sp1 complex in the transcription of miR-139-5p. Biochem Biophys Res Commun 485(4):736–741. https://doi.org/10.1016/j.bbrc.2017.02.118
doi: 10.1016/j.bbrc.2017.02.118
pubmed: 28257846
Takafuji Y, Tatsumi K, Kawao N et al (2021) MicroRNA-196a-5p in extracellular vesicles secreted from myoblasts suppresses osteoclast-like cell formation in mouse cells. Calcif Tissue Int 108(3):364–376. https://doi.org/10.1007/s00223-020-00772-6
doi: 10.1007/s00223-020-00772-6
pubmed: 33090325
Sun L, Lian JX, Meng S (2019) MiR-125a-5p promotes osteoclastogenesis by targeting TNFRSF1B. Cell Mol Biol Lett 24:23. https://doi.org/10.1186/s11658-019-0146-0
doi: 10.1186/s11658-019-0146-0
pubmed: 30976285
pmcid: 6437974
Zhou Y, Zhu Y, Dong X et al (2021) Exosomes derived from pancreatic cancer cells induce osteoclast differentiation through the miR125a-5p/TNFRSF1B pathway. Onco Targets Ther 14:2727–2739. https://doi.org/10.2147/OTT.S282319
doi: 10.2147/OTT.S282319
pubmed: 33907416
pmcid: 8064725
Lee WS, Yasuda S, Kono M et al (2020) MicroRNA-9 ameliorates destructive arthritis through down-regulation of NF-kappaB1-RANKL pathway in fibroblast-like synoviocytes. Clin Immunol 212:108348. https://doi.org/10.1016/j.clim.2020.108348
doi: 10.1016/j.clim.2020.108348
pubmed: 31978557
Gao Y, Wang B, Shen C et al (2018) Overexpression of miR146a blocks the effect of LPS on RANKLinduced osteoclast differentiation. Mol Med Rep 18(6):5481–5488. https://doi.org/10.3892/mmr.2018.9610
doi: 10.3892/mmr.2018.9610
pubmed: 30387844
pmcid: 6236290
Zhang J, Zhao H, Chen J et al (2012) Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett 586(19):3255–3262. https://doi.org/10.1016/j.febslet.2012.06.047
doi: 10.1016/j.febslet.2012.06.047
pubmed: 22771905
Cheng P, Chen C, He HB et al (2013) miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res 28(5):1180–1190. https://doi.org/10.1002/jbmr.1845
doi: 10.1002/jbmr.1845
pubmed: 23225151
Guo K, Zhang D, Wu H et al (2018) MiRNA-199a-5p positively regulated RANKL-induced osteoclast differentiation by target Mafb protein. J Cell Biochem. https://doi.org/10.1002/jcb.27968
doi: 10.1002/jcb.27968
pubmed: 30592329
pmcid: 6704366
Ammari M, Presumey J, Ponsolles C et al (2018) Delivery of miR-146a to Ly6C(high) monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics 8(21):5972–5985. https://doi.org/10.7150/thno.29313
doi: 10.7150/thno.29313
pubmed: 30613275
pmcid: 6299444
Niu D, Gong Z, Sun X et al (2019) miR-338-3p regulates osteoclastogenesis via targeting IKKbeta gene. In Vitro Cell Dev Biol Anim 55(4):243–251. https://doi.org/10.1007/s11626-019-00325-8
doi: 10.1007/s11626-019-00325-8
pubmed: 30887211
Huang Y, Ren K, Yao T et al (2020) MicroRNA-25-3p regulates osteoclasts through nuclear factor I X. Biochem Biophys Res Commun 522(1):74–80. https://doi.org/10.1016/j.bbrc.2019.11.043
doi: 10.1016/j.bbrc.2019.11.043
pubmed: 31740002
Shen G, Ren H, Shang Q et al (2020) miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss. Theranostics 10(10):4334–4348. https://doi.org/10.7150/thno.42982
doi: 10.7150/thno.42982
pubmed: 32292498
pmcid: 7150474
Zhu J, Wang H, Liu H (2020) Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-kappaB signaling pathway. Biochem Biophys Res Commun 529(1):35–42. https://doi.org/10.1016/j.bbrc.2020.05.111
doi: 10.1016/j.bbrc.2020.05.111
pubmed: 32560816
Liu Z, Li C, Huang P et al (2020) CircHmbox1 targeting miRNA-1247-5p is involved in the regulation of bone metabolism by TNF-alpha in postmenopausal osteoporosis. Front Cell Dev Biol 8:594785. https://doi.org/10.3389/fcell.2020.594785
doi: 10.3389/fcell.2020.594785
pubmed: 33425899
pmcid: 7786182
Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119(10):3024–3034. https://doi.org/10.1172/JCI38716
doi: 10.1172/JCI38716
pubmed: 19770515
pmcid: 2752069
Yang C, McCoy K, Davis JL et al (2010) NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS One 5(11):e15383. https://doi.org/10.1371/journal.pone.0015383
doi: 10.1371/journal.pone.0015383
pubmed: 21151480
pmcid: 2975662
Hu H, Brittain GC, Chang JH et al (2013) OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature 494(7437):371–374. https://doi.org/10.1038/nature11831
doi: 10.1038/nature11831
pubmed: 23334419
pmcid: 3578967
Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. https://doi.org/10.1038/nature01658
doi: 10.1038/nature01658
pubmed: 12748652
Wada T, Nakashima T, Hiroshi N et al (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12(1):17–25. https://doi.org/10.1016/j.molmed.2005.11.007
doi: 10.1016/j.molmed.2005.11.007
pubmed: 16356770
Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901. https://doi.org/10.1016/s1534-5807(02)00369-6
doi: 10.1016/s1534-5807(02)00369-6
pubmed: 12479813
Chen W, Zhu G, Hao L et al (2013) C/EBPalpha regulates osteoclast lineage commitment. Proc Natl Acad Sci U S A 110(18):7294–7299. https://doi.org/10.1073/pnas.1211383110
doi: 10.1073/pnas.1211383110
pubmed: 23580622
pmcid: 3645589
Liu C, Cao Z, Bai Y et al (2019) LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J Cell Physiol 234(2):1606–1617. https://doi.org/10.1002/jcp.27031
doi: 10.1002/jcp.27031
pubmed: 30132869
Lee CP, Huang YN, Nithiyanantham S et al (2019) LncRNA-Jak3:Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression. Environ Toxicol 34(2):179–187. https://doi.org/10.1002/tox.22672
doi: 10.1002/tox.22672
pubmed: 30387921
Zhang R, Li J, Li G et al (2020) LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci 12(1):14. https://doi.org/10.1038/s41368-020-0077-7
doi: 10.1038/s41368-020-0077-7
pubmed: 32385254
pmcid: 7210890
Li J, Jin F, Cai M et al (2022) LncRNA Nron inhibits bone resorption in periodontitis. J Dent Res 101(2):187–195. https://doi.org/10.1177/00220345211019689
doi: 10.1177/00220345211019689
pubmed: 34157883
Ikeda F, Matsubara T, Tsurukai T et al (2008) JNK/c-Jun signaling mediates an anti-apoptotic effect of RANKL in osteoclasts. J Bone Miner Res 23(6):907–914. https://doi.org/10.1359/jbmr.080211
doi: 10.1359/jbmr.080211
pubmed: 18251700
Huang H, Ryu J, Ha J et al (2006) Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ 13(11):1879–1891. https://doi.org/10.1038/sj.cdd.4401882
doi: 10.1038/sj.cdd.4401882
pubmed: 16498455
Qu B, Xia X, Yan M et al (2015) miR-218 is involved in the negative regulation of osteoclastogenesis and bone resorption by partial suppression of p38MAPK-c-Fos-NFATc1 signaling: potential role for osteopenic diseases. Exp Cell Res 338(1):89–96. https://doi.org/10.1016/j.yexcr.2015.07.023
doi: 10.1016/j.yexcr.2015.07.023
pubmed: 26216483
Kong XH, Shi SF, Hu HJ et al (2021) MicroRNA-20a suppresses RANKL-modulated osteoclastogenesis and prevents bone erosion in mice with rheumatoid arthritis through the TLR4/p38 pathway. J Biol Regul Homeost Agents 35(3):921–31. https://doi.org/10.23812/20-604-A
doi: 10.23812/20-604-A
pubmed: 34212684
Ni X, Xia T, Zhao Y et al (2014) Downregulation of miR-106b induced breast cancer cell invasion and motility in association with overexpression of matrix metalloproteinase 2. Cancer Sci 105(1):18–25. https://doi.org/10.1111/cas.12309
doi: 10.1111/cas.12309
pubmed: 24164962
Sang S, Zhang Z, Qin S et al (2017) MicroRNA-16-5p inhibits osteoclastogenesis in giant cell tumor of bone. Biomed Res Int 2017:3173547. https://doi.org/10.1155/2017/3173547
doi: 10.1155/2017/3173547
pubmed: 28589137
pmcid: 5447262
Guo J, Zeng X, Miao J et al (2019) MiRNA-218 regulates osteoclast differentiation and inflammation response in periodontitis rats through Mmp9. Cell Microbiol 21(4):e12979. https://doi.org/10.1111/cmi.12979
doi: 10.1111/cmi.12979
pubmed: 30444938
Wu Z, Yin H, Liu T et al (2014) MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13. Biochem Biophys Res Commun 443(3):944–949. https://doi.org/10.1016/j.bbrc.2013.12.075
doi: 10.1016/j.bbrc.2013.12.075
pubmed: 24360951
Ell B, Mercatali L, Ibrahim T et al (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24(4):542–556. https://doi.org/10.1016/j.ccr.2013.09.008
doi: 10.1016/j.ccr.2013.09.008
pubmed: 24135284
Zhao H, Zhang J, Shao H et al (2017) Transforming growth factor beta1/Smad4 signaling affects osteoclast differentiation via regulation of miR-155 expression. Mol Cells 40(3):211–21. https://doi.org/10.14348/molcells.2017.2303
doi: 10.14348/molcells.2017.2303
pubmed: 28359146
pmcid: 5386959
Zhao H, Zhang J, Shao H et al (2017) miRNA-340 inhibits osteoclast differentiation via repression of MITF. Biosci Rep. https://doi.org/10.1042/BSR20170302
Zhang Y, Ma C, Liu C et al (2020) NF-kappaB promotes osteoclast differentiation by overexpressing MITF via down regulating microRNA-1276 expression. Life Sci 258:118093. https://doi.org/10.1016/j.lfs.2020.118093
doi: 10.1016/j.lfs.2020.118093
pubmed: 32673666
Franceschetti T, Kessler CB, Lee SK et al (2013) miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem 288(46):33347–33360. https://doi.org/10.1074/jbc.M113.484568
doi: 10.1074/jbc.M113.484568
pubmed: 24085298
pmcid: 3829182
Cui Y, Fu S, Sun D et al (2019) EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1. J Cell Mol Med 23(6):3843–3854. https://doi.org/10.1111/jcmm.14228
doi: 10.1111/jcmm.14228
pubmed: 31025509
pmcid: 6533478
Zhang Y, Chen XF, Li J et al (2020) lncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J Bone Miner Res 35(9):1772–1781. https://doi.org/10.1002/jbmr.4039
doi: 10.1002/jbmr.4039
pubmed: 32353178
Takigawa S, Chen A, Wan Q et al (2016) Role of miR-222-3p in c-Src-mediated regulation of osteoclastogenesis. Int J Mol Sci 17(2):240. https://doi.org/10.3390/ijms17020240
doi: 10.3390/ijms17020240
pubmed: 26891296
pmcid: 4783971
Huang Z, Chu L, Liang J et al (2021) H19 promotes HCC bone metastasis through reducing osteoprotegerin expression in a protein phosphatase 1 catalytic subunit alpha/p38 mitogen-activated protein kinase-dependent manner and sponging microRNA 200b–3p. Hepatology 74(1):214–232. https://doi.org/10.1002/hep.31673
doi: 10.1002/hep.31673
pubmed: 33615520
Chen L, Wang Y, Lu X et al (2021) miRNA-7062-5p promoting bone resorption after bone metastasis of colorectal cancer through inhibiting GPR65. Front Cell Dev Biol 9:681968. https://doi.org/10.3389/fcell.2021.681968
doi: 10.3389/fcell.2021.681968
pubmed: 34485279
pmcid: 8416178
Li HW, Zeng HS (2020) Regulation of JAK/STAT signal pathway by miR-21 in the pathogenesis of juvenile idiopathic arthritis. World J Pediatr 16(5):502–513. https://doi.org/10.1007/s12519-019-00268-w
doi: 10.1007/s12519-019-00268-w
pubmed: 31641939
Fordham JB, Guilfoyle K, Naqvi AR et al (2016) MiR-142-3p is a RANKL-dependent inducer of cell death in osteoclasts. Sci Rep 6:24980. https://doi.org/10.1038/srep24980
doi: 10.1038/srep24980
pubmed: 27113904
pmcid: 4844978
Cong F, Wu N, Tian X et al (2017) MicroRNA-34c promotes osteoclast differentiation through targeting LGR4. Gene 610:1–8. https://doi.org/10.1016/j.gene.2017.01.028
doi: 10.1016/j.gene.2017.01.028
pubmed: 28130056
Shin B, Hrdlicka HC, Delany AM et al (2021) Inhibition of miR-29 activity in the myeloid lineage increases response to calcitonin and trabecular bone volume in mice. Endocrinology. https://doi.org/10.1210/endocr/bqab135
doi: 10.1210/endocr/bqab135
pubmed: 34192317
pmcid: 8294693
Duan L, Liang Y, Xu X et al (2020) Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res Ther 22(1):279. https://doi.org/10.1186/s13075-020-02374-x
doi: 10.1186/s13075-020-02374-x
pubmed: 33239099
pmcid: 7690185
Xia TS, Wang GZ, Ding Q et al (2012) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 132(2):471–486. https://doi.org/10.1007/s10549-011-1496-0
doi: 10.1007/s10549-011-1496-0
pubmed: 21638054
Chiou WF, Huang YL, Liu YW (2014) (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. PLoS One 9(2):e89159. https://doi.org/10.1371/journal.pone.0089159
doi: 10.1371/journal.pone.0089159
pubmed: 24558484
pmcid: 3928435
Chen RS, Zhang XB, Zhu XT et al (2019) LncRNA Bmncr alleviates the progression of osteoporosis by inhibiting RANML-induced osteoclast differentiation. Eur Rev Med Pharmacol Sci 23(21):9199–9206. https://doi.org/10.26355/eurrev_201911_19411
doi: 10.26355/eurrev_201911_19411
pubmed: 31773670
O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36(4):542–550. https://doi.org/10.1016/j.immuni.2012.03.014
doi: 10.1016/j.immuni.2012.03.014
pubmed: 22520847
pmcid: 3499974
Zhou S, Dai Q, Huang X et al (2021) STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat Commun 12(1):6891. https://doi.org/10.1038/s41467-021-27273-w
doi: 10.1038/s41467-021-27273-w
pubmed: 34824272
pmcid: 8616950
Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414. https://doi.org/10.1016/j.cell.2008.04.013
doi: 10.1016/j.cell.2008.04.013
pubmed: 18455982
Lee ZH, Kim HH (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305(2):211–214. https://doi.org/10.1016/s0006-291x(03)00695-8
doi: 10.1016/s0006-291x(03)00695-8
pubmed: 12745060
Feng X (2005) Ranking intracellular signaling in osteoclasts. IUBMB Life 57(6):389–395. https://doi.org/10.1080/15216540500137669
doi: 10.1080/15216540500137669
pubmed: 16012047
Zhao C, Sun W, Zhang P et al (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353. https://doi.org/10.1080/15476286.2015.1017205
doi: 10.1080/15476286.2015.1017205
pubmed: 25826666
pmcid: 4615895
Wang C, Sun W, Ling S et al (2019) AAV-Anti-miR-214 prevents collapse of the femoral head in osteonecrosis by regulating osteoblast and osteoclast activities. Mol Ther Nucleic Acids 18:841–850. https://doi.org/10.1016/j.omtn.2019.09.030
doi: 10.1016/j.omtn.2019.09.030
pubmed: 31739209
pmcid: 6861671
Wang CG, Wang L, Yang T et al (2020) Pseudogene PTENP1 sponges miR-214 to regulate the expression of PTEN to modulate osteoclast differentiation and attenuate osteoporosis. Cytotherapy 22(8):412–423. https://doi.org/10.1016/j.jcyt.2020.04.090
doi: 10.1016/j.jcyt.2020.04.090
pubmed: 32561161
Wang S, Liu Z, Wang J et al (2020) miR21 promotes osteoclastogenesis through activation of PI3K/Akt signaling by targeting Pten in RAW2647 cells. Mol Med Rep 21(3):1125–32. https://doi.org/10.3892/mmr.2020.10938
doi: 10.3892/mmr.2020.10938
pubmed: 32016444
pmcid: 7003029
Zhao Q, Liu C, Xie Y et al (2020) Lung cancer cells derived circulating miR-21 promotes differentiation of monocytes into osteoclasts. Onco Targets Ther 13:2643–2656. https://doi.org/10.2147/OTT.S232876
doi: 10.2147/OTT.S232876
pubmed: 32280240
pmcid: 7127863
Davis HM, Pacheco-Costa R, Atkinson EG et al (2017) Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 16(3):551–563. https://doi.org/10.1111/acel.12586
doi: 10.1111/acel.12586
pubmed: 28317237
pmcid: 5418188
Yu B, Bai J, Shi J et al (2020) MiR-106b inhibition suppresses inflammatory bone destruction of wear debris-induced periprosthetic osteolysis in rats. J Cell Mol Med 24(13):7490–7503. https://doi.org/10.1111/jcmm.15376
doi: 10.1111/jcmm.15376
pubmed: 32485091
pmcid: 7339204
Li M, Luo R, Yang W et al (2019) miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 55(5):376–386. https://doi.org/10.1007/s11626-019-00344-5
doi: 10.1007/s11626-019-00344-5
pubmed: 31025251
Lou Z, Peng Z, Wang B et al (2019) miR-142-5p promotes the osteoclast differentiation of bone marrow-derived macrophages via PTEN/PI3K/AKT/FoxO1 pathway. J Bone Miner Metab 37(5):815–824. https://doi.org/10.1007/s00774-019-00997-y
doi: 10.1007/s00774-019-00997-y
pubmed: 30900017
Luo T, Zhou X, Jiang E et al (2021) Osteosarcoma cell-derived small extracellular vesicles enhance osteoclastogenesis and bone resorption through transferring MicroRNA-19a-3p. Front Oncol 11:618662. https://doi.org/10.3389/fonc.2021.618662
doi: 10.3389/fonc.2021.618662
pubmed: 33842319
pmcid: 8029976
Wu K, Feng J, Lyu F et al (2021) Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun 12(1):5196. https://doi.org/10.1038/s41467-021-25473-y
doi: 10.1038/s41467-021-25473-y
pubmed: 34465793
pmcid: 8408156
Wang M, Zhao M, Guo Q et al (2021) Non-small cell lung cancer cell-derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp Cell Res 408(1):112834. https://doi.org/10.1016/j.yexcr.2021.112834
doi: 10.1016/j.yexcr.2021.112834
pubmed: 34537206
Hu CH, Sui BD, Du FY et al (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191. https://doi.org/10.1038/srep43191
doi: 10.1038/srep43191
pubmed: 28240263
pmcid: 5327426
Zhou Y, Liu Y, Cheng L (2012) miR-21 expression is related to particle-induced osteolysis pathogenesis. J Orthop Res 30(11):1837–1842. https://doi.org/10.1002/jor.22128
doi: 10.1002/jor.22128
pubmed: 22508494
Xu Z, Liu X, Wang H et al (2018) Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene 666:116–122. https://doi.org/10.1016/j.gene.2018.05.008
doi: 10.1016/j.gene.2018.05.008
pubmed: 29730429
Zhang Y, Tian Y, Yang X et al (2020) MicroRNA21 serves an important role during PAOO facilitated orthodontic tooth movement. Mol Med Rep 22(1):474–482. https://doi.org/10.3892/mmr.2020.11107
doi: 10.3892/mmr.2020.11107
pubmed: 32377742
pmcid: 7248476
Madhyastha R, Madhyastha H, Pengjam Y et al (2019) The pivotal role of microRNA-21 in osteoclastogenesis inhibition by anthracycline glycoside aloin. J Nat Med 73(1):59–66. https://doi.org/10.1007/s11418-018-1237-3
doi: 10.1007/s11418-018-1237-3
pubmed: 30116953
Tian G, Hu K, Qiu S et al (2021) Exosomes derived from PC-3 cells suppress osteoclast differentiation by downregulating miR-148a and blocking the PI3K/AKT/mTOR pathway. Exp Ther Med 22(5):1304. https://doi.org/10.3892/etm.2021.10739
doi: 10.3892/etm.2021.10739
pubmed: 34630659
pmcid: 8461599
Ma Y, Yang H, Huang J (2018) Icariin ameliorates dexamethasoneinduced bone deterioration in an experimental mouse model via activation of microRNA186 inhibition of cathepsin K. Mol Med Rep 17(1):1633–1641. https://doi.org/10.3892/mmr.2017.8065
doi: 10.3892/mmr.2017.8065
pubmed: 29257214
Inoue K, Hu X, Zhao B (2020) Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption. FASEB J 34(2):2392–2407. https://doi.org/10.1096/fj.201902227R
doi: 10.1096/fj.201902227R
pubmed: 31908034
Miller CH, Smith SM, Elguindy M et al (2016) RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol 196(12):4977–4986. https://doi.org/10.4049/jimmunol.1502044
doi: 10.4049/jimmunol.1502044
pubmed: 27183593
Tian Y, Gong Z, Zhao R et al (2021) Melatonin inhibits RANKL induced osteoclastogenesis through the miR882/Reverbalpha axis in Raw264.7 cells. Int J Mol Med 47(2):633–42. https://doi.org/10.3892/ijmm.2020.4820
doi: 10.3892/ijmm.2020.4820
pubmed: 33416111
Wang JZ, Zhao BH (2021) MiR-23b-3p functions as a positive factor for osteoporosis progression by targeting CCND1 in MC3T3-E1 cells. In Vitro Cell Dev Biol Anim 57(3):324–331. https://doi.org/10.1007/s11626-021-00544-y
doi: 10.1007/s11626-021-00544-y
pubmed: 33564997
Ghafouri-Fard S, Abak A, Shoorei H et al (2021) Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 133:110986. https://doi.org/10.1016/j.biopha.2020.110986
doi: 10.1016/j.biopha.2020.110986
pubmed: 33166764
Sugatani T, Alvarez U, Hruska KA (2003) PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem 278(7):5001–5008. https://doi.org/10.1074/jbc.M209299200
doi: 10.1074/jbc.M209299200
pubmed: 12460992
Tamura M, Gu J, Matsumoto K et al (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280(5369):1614–1617. https://doi.org/10.1126/science.280.5369.1614
doi: 10.1126/science.280.5369.1614
pubmed: 9616126
Holliday LS, McHugh KP, Zuo J et al (2017) Exosomes: novel regulators of bone remodelling and potential therapeutic agents for orthodontics. Orthod Craniofac Res 20(Suppl 1):95–99. https://doi.org/10.1111/ocr.12165
doi: 10.1111/ocr.12165
pubmed: 28643924
pmcid: 5484069
Lu K, Chen Q, Li M et al (2020) Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer. Free Radic Biol Med 159:150–163. https://doi.org/10.1016/j.freeradbiomed.2020.06.016
doi: 10.1016/j.freeradbiomed.2020.06.016
pubmed: 32745771
Dorrello NV, Peschiaroli A, Guardavaccaro D et al (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314(5798):467–471. https://doi.org/10.1126/science.1130276
doi: 10.1126/science.1130276
pubmed: 17053147
Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114(6):1217–1222. https://doi.org/10.1002/jcb.24471
doi: 10.1002/jcb.24471
pubmed: 23238785
pmcid: 4154486
Cong C, Tian J, Gao T et al (2020) lncRNA GAS5 is upregulated in osteoporosis and downregulates miR-21 to promote apoptosis of osteoclasts. Clin Interv Aging 15:1163–1169. https://doi.org/10.2147/CIA.S235197
doi: 10.2147/CIA.S235197
pubmed: 32764903
pmcid: 7371557
Shao B, Liao L, Yu Y et al (2015) Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB J 29(9):3935–3944. https://doi.org/10.1096/fj.15-272823
doi: 10.1096/fj.15-272823
pubmed: 26062603
Li W, Zhu HM, Xu HD et al (2018) CRNDE impacts the proliferation of osteoclast by estrogen deficiency in postmenopausal osteoporosis. Eur Rev Med Pharmacol Sci 22(18):5815–5821. https://doi.org/10.26355/eurrev_201809_15907
doi: 10.26355/eurrev_201809_15907
pubmed: 30280760
Kang H, Yang K, Xiao L et al (2017) Osteoblast hypoxia-inducible factor-1alpha pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway. Front Immunol 8:1312. https://doi.org/10.3389/fimmu.2017.01312
doi: 10.3389/fimmu.2017.01312
pubmed: 29085370
pmcid: 5650688
Zhang X, Li Z, Zhao Z et al (2021) Runx1/miR-26a/Jagged1 signaling axis controls osteoclastogenesis and alleviates orthodontically induced inflammatory root resorption. Int Immunopharmacol 100:107991. https://doi.org/10.1016/j.intimp.2021.107991
doi: 10.1016/j.intimp.2021.107991
pubmed: 34438336
Jiang ZY, Jiang JJ, Ma YS et al (2018) Downregulation of miR-223 and miR-19a induces differentiation and promotes recruitment of osteoclast cells in giant-cell tumor of the bone via the Runx2/TWIST-RANK/RANKL pathway. Biochem Biophys Res Commun 505(4):1003–1009. https://doi.org/10.1016/j.bbrc.2018.10.025
doi: 10.1016/j.bbrc.2018.10.025
pubmed: 30309658
Hegewald AB, Breitwieser K, Ottinger SM et al (2020) Extracellular miR-574-5p induces osteoclast differentiation via TLR 7/8 in rheumatoid arthritis. Front Immunol 11:585282. https://doi.org/10.3389/fimmu.2020.585282
doi: 10.3389/fimmu.2020.585282
pubmed: 33154755
pmcid: 7591713
Xie H, Cao L, Ye L et al (2021) The miR-1906 mimic attenuates bone loss in osteoporosis by down-regulating the TLR4/MyD88/NF-kappaB pathway. Physiol Int 107(4):469–478. https://doi.org/10.1556/2060.2020.00042
doi: 10.1556/2060.2020.00042
pubmed: 33410769
Wang WW, Yang L, Wu J et al (2017) The function of miR-218 and miR-618 in postmenopausal osteoporosis. Eur Rev Med Pharmacol Sci 21(24):5534–5541. https://doi.org/10.26355/eurrev_201712_13989
doi: 10.26355/eurrev_201712_13989
pubmed: 29271983
Croset M, Pantano F, Kan CWS et al (2018) miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res 78(18):5259–5273. https://doi.org/10.1158/0008-5472.CAN-17-3058
doi: 10.1158/0008-5472.CAN-17-3058
pubmed: 30042152
Yang S, Zhang W, Cai M et al (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Miner Res 33(10):1799–1812. https://doi.org/10.1002/jbmr.3479
doi: 10.1002/jbmr.3479
pubmed: 29852535
Li K, Chen S, Cai P et al (2020) MiRNA-483-5p is involved in the pathogenesis of osteoporosis by promoting osteoclast differentiation. Mol Cell Probes 49:101479. https://doi.org/10.1016/j.mcp.2019.101479
doi: 10.1016/j.mcp.2019.101479
pubmed: 31706013
Kim K, Kim JH, Kim I et al (2015) MicroRNA-26a regulates RANKL-induced osteoclast formation. Mol Cells 38(1):75–80. https://doi.org/10.14348/molcells.2015.2241
doi: 10.14348/molcells.2015.2241
pubmed: 25518928
Yu FY, Xie CQ, Sun JT et al (2018) Overexpressed miR-145 inhibits osteoclastogenesis in RANKL-induced bone marrow-derived macrophages and ovariectomized mice by regulation of Smad3. Life Sci 202:11–20. https://doi.org/10.1016/j.lfs.2018.03.042
doi: 10.1016/j.lfs.2018.03.042
pubmed: 29577879
Guo L, Chen K, Yuan J et al (2018) Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARgamma and APC. J Cell Physiol 234(1):581–594. https://doi.org/10.1002/jcp.26788
doi: 10.1002/jcp.26788
pubmed: 30272823
Inoue K, Deng Z, Chen Y et al (2018) Bone protection by inhibition of microRNA-182. Nat Commun 9(1):4108. https://doi.org/10.1038/s41467-018-06446-0
doi: 10.1038/s41467-018-06446-0
pubmed: 30291236
pmcid: 6173760
Liu W, Wang P, Xie Z et al (2019) Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis 10(3):188. https://doi.org/10.1038/s41419-019-1448-x
doi: 10.1038/s41419-019-1448-x
pubmed: 30804325
pmcid: 6389901
Jia D, Li Y, Han R et al (2019) miR146a5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF1induced cartilage degradation. Mol Med Rep 19(5):4388–4400. https://doi.org/10.3892/mmr.2019.10076
doi: 10.3892/mmr.2019.10076
pubmed: 30942441
pmcid: 6472139
Reziwan K, Sun D, Zhang B et al (2019) MicroRNA-1225 activates Keap1-Nrf2-HO-1 signalling to inhibit TNFalpha-induced osteoclastogenesis by mediating ROS generation. Cell Biochem Funct 37(4):256–265. https://doi.org/10.1002/cbf.3394
doi: 10.1002/cbf.3394
pubmed: 31017694
Chen X, Ouyang Z, Shen Y et al (2019) CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 16(9):1249–1262. https://doi.org/10.1080/15476286.2019.1624470
doi: 10.1080/15476286.2019.1624470
pubmed: 31204558
pmcid: 6693548
Guo L, Zhu Y, Li L et al (2019) Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med 8(12):5687–5701. https://doi.org/10.1002/cam4.2454
doi: 10.1002/cam4.2454
pubmed: 31385464
pmcid: 6745844
Yan S, Miao L, Lu Y et al (2019) MicroRNA-506 upregulation contributes to sirtuin 1 inhibition of osteoclastogenesis in bone marrow stromal cells induced by TNF-alpha treatment. Cell Biochem Funct 37(8):598–607. https://doi.org/10.1002/cbf.3436
doi: 10.1002/cbf.3436
pubmed: 31515847
Wang H, Shen Y (2019) MicroRNA20a negatively regulates the growth and osteoclastogenesis of THP1 cells by downregulating PPARgamma. Mol Med Rep 20(5):4271–4276. https://doi.org/10.3892/mmr.2019.10676
doi: 10.3892/mmr.2019.10676
pubmed: 31545439
Zhang Z, Xiang L, Wang Y et al (2020) Effect of diosgenin on the circulating MicroRNA profile of ovariectomized rats. Front Pharmacol 11:207. https://doi.org/10.3389/fphar.2020.00207
doi: 10.3389/fphar.2020.00207
pubmed: 32210807
pmcid: 7069125
Liu S, Wang C, Bai J et al (2021) Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis. Cell Biol Int 45(2):447–455. https://doi.org/10.1002/cbin.11502
doi: 10.1002/cbin.11502
pubmed: 33200464
Qiao L, Li CG, Liu D (2020) CircRNA_0048211 protects postmenopausal osteoporosis through targeting miRNA-93-5p to regulate BMP2. Eur Rev Med Pharmacol Sci 24(7):3459–3466. https://doi.org/10.26355/eurrev_202004_20804
doi: 10.26355/eurrev_202004_20804
pubmed: 32329818
Yu L, Liu Y (2019) circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun 516(2):546–550. https://doi.org/10.1016/j.bbrc.2019.06.087
doi: 10.1016/j.bbrc.2019.06.087
pubmed: 31235259
Mao Z, Zhu Y, Hao W et al (2019) MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. IUBMB Life 71(12):1916–1928. https://doi.org/10.1002/iub.2131
doi: 10.1002/iub.2131
pubmed: 31317664
Wang L, He Y, Ning W (2021) Role of enhancer of zeste homolog 2 in osteoclast formation and periodontitis development by downregulating microRNA-101-regulated VCAM-1. J Tissue Eng Regen Med 15(6):534–545. https://doi.org/10.1002/term.3187
doi: 10.1002/term.3187
pubmed: 33686766
Chengling L, Yulin Z, Xiaoyu X et al (2021) miR-325-3p, a novel regulator of osteoclastogenesis in osteolysis of colorectal cancer through targeting S100A4. Mol Med 27(1):23. https://doi.org/10.1186/s10020-021-00282-7
doi: 10.1186/s10020-021-00282-7
pubmed: 33691630
pmcid: 7944890
Huang Y, Yang Y, Wang J et al (2021) miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem 296:100617. https://doi.org/10.1016/j.jbc.2021.100617
doi: 10.1016/j.jbc.2021.100617
pubmed: 33811860
pmcid: 8095171
Jiang H, Kitaura H, Liu L et al (2021) The miR-155-5p inhibits osteoclast differentiation through targeting CXCR2 in orthodontic root resorption. J Periodontal Res 56(4):761–773. https://doi.org/10.1111/jre.12875
doi: 10.1111/jre.12875
pubmed: 33760254
Guan J, Gan L, Jin D et al (2021) Overexpression of circ_0021739 in peripheral blood mononuclear cells in women with postmenopausal osteoporosis is associated with reduced expression of microRNA-194–5p in osteoclasts. Med Sci Monit 27:e929170. https://doi.org/10.12659/MSM.929170
doi: 10.12659/MSM.929170
pubmed: 33875631
pmcid: 8067671
Charles JF, Aliprantis AO (2014) Osteoclasts: more than “bone eaters.” Trends Mol Med 20(8):449–459. https://doi.org/10.1016/j.molmed.2014.06.001
doi: 10.1016/j.molmed.2014.06.001
pubmed: 25008556
pmcid: 4119859
Yang Y, Fang S (2017) Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 456:16–35. https://doi.org/10.1016/j.mce.2016.11.018
doi: 10.1016/j.mce.2016.11.018
pubmed: 27888003
Vaananen K (2005) Mechanism of osteoclast mediated bone resorption–rationale for the design of new therapeutics. Adv Drug Deliv Rev 57(7):959–971. https://doi.org/10.1016/j.addr.2004.12.018
doi: 10.1016/j.addr.2004.12.018
pubmed: 15876398
Taubmann J, Krishnacoumar B, Bohm C et al (2020) Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci Rep 10(1):21020. https://doi.org/10.1038/s41598-020-77892-4
doi: 10.1038/s41598-020-77892-4
pubmed: 33273570
pmcid: 7713370
Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352. https://doi.org/10.1038/nature12986
doi: 10.1038/nature12986
pubmed: 24429633
pmcid: 4113481