Considerations for artificial intelligence clinical impact in oncologic imaging: an AI4HI position paper.
Artificial intelligence
Clinical validation
Oncologic imaging
Prediction models
Journal
Insights into imaging
ISSN: 1869-4101
Titre abrégé: Insights Imaging
Pays: Germany
ID NLM: 101532453
Informations de publication
Date de publication:
10 May 2022
10 May 2022
Historique:
received:
22
11
2021
accepted:
07
04
2022
entrez:
10
5
2022
pubmed:
11
5
2022
medline:
11
5
2022
Statut:
epublish
Résumé
To achieve clinical impact in daily oncological practice, emerging AI-based cancer imaging research needs to have clearly defined medical focus, AI methods, and outcomes to be estimated. AI-supported cancer imaging should predict major relevant clinical endpoints, aiming to extract associations and draw inferences in a fair, robust, and trustworthy way. AI-assisted solutions as medical devices, developed using multicenter heterogeneous datasets, should be targeted to have an impact on the clinical care pathway. When designing an AI-based research study in oncologic imaging, ensuring clinical impact in AI solutions requires careful consideration of key aspects, including target population selection, sample size definition, standards, and common data elements utilization, balanced dataset splitting, appropriate validation methodology, adequate ground truth, and careful selection of clinical endpoints. Endpoints may be pathology hallmarks, disease behavior, treatment response, or patient prognosis. Ensuring ethical, safety, and privacy considerations are also mandatory before clinical validation is performed. The Artificial Intelligence for Health Imaging (AI4HI) Clinical Working Group has discussed and present in this paper some indicative Machine Learning (ML) enabled decision-support solutions currently under research in the AI4HI projects, as well as the main considerations and requirements that AI solutions should have from a clinical perspective, which can be adopted into clinical practice. If effectively designed, implemented, and validated, cancer imaging AI-supported tools will have the potential to revolutionize the field of precision medicine in oncology.
Identifiants
pubmed: 35536446
doi: 10.1186/s13244-022-01220-9
pii: 10.1186/s13244-022-01220-9
pmc: PMC9091068
doi:
Types de publication
Journal Article
Langues
eng
Pagination
89Subventions
Organisme : Horizon 2020 Framework Programme
ID : 952172
Organisme : Horizon 2020 Framework Programme
ID : 826494
Organisme : Horizon 2020 Framework Programme
ID : 952159
Organisme : Horizon 2020 Framework Programme
ID : 952179
Organisme : Horizon 2020 Framework Programme
ID : 952103
Informations de copyright
© 2022. The Author(s).
Références
Med Decis Making. 2013 Jan;33(1):98-107
pubmed: 23300205
Insights Imaging. 2019 Oct 1;10(1):101
pubmed: 31571015
Eur Radiol Exp. 2022 Jun 1;6(1):22
pubmed: 35641659
J Am Coll Radiol. 2021 Mar;18(3 Pt A):413-424
pubmed: 33096088
Radiology. 2017 Jun;283(3):837-844
pubmed: 27831831
Radiology. 2020 Dec;297(3):513-520
pubmed: 33021895
J Visc Surg. 2014 Feb;151(1):17-22
pubmed: 24440056
Eur J Cancer. 2012 Mar;48(4):441-6
pubmed: 22257792
Ann Intern Med. 2010 Nov 2;153(9):600-6
pubmed: 21041580
Insights Imaging. 2021 Feb 2;12(1):11
pubmed: 33528677
Insights Imaging. 2021 May 1;12(1):59
pubmed: 33932167
IEEE Trans Med Imaging. 2019 Sep;38(9):2059-2069
pubmed: 30676951
J Clin Transl Res. 2018 Aug 18;3(Suppl 3):424-430
pubmed: 30873491
Nat Med. 2021 Apr;27(4):582-584
pubmed: 33820998
Nat Med. 2019 Sep;25(9):1337-1340
pubmed: 31427808
Am J Clin Oncol. 1982 Dec;5(6):649-55
pubmed: 7165009
Lancet Oncol. 2019 May;20(5):e262-e273
pubmed: 31044724
Med Phys. 2018 Nov;45(11):5105-5115
pubmed: 30229951
Radiology. 2020 Apr;295(1):4-15
pubmed: 32068507
Med Phys. 2020 Dec;47(12):6029-6038
pubmed: 33176026
J Magn Reson Imaging. 2018 Mar;47(3):604-620
pubmed: 29095543
Cancers (Basel). 2020 Nov 26;12(12):
pubmed: 33256107
Contemp Clin Trials Commun. 2019 Nov 12;16:100486
pubmed: 31799474
Neuroimage. 2017 Nov 1;161:149-170
pubmed: 28826946
Eur Heart J. 2012 Jan;33(2):176-82
pubmed: 21900289
Radiology. 2009 Sep;252(3):852-6
pubmed: 19717755
J Korean Med Sci. 2018 Apr 27;33(22):e152
pubmed: 29805337
BMC Med. 2019 Oct 29;17(1):195
pubmed: 31665002
Plast Reconstr Surg. 2010 Dec;126(6):2234-2242
pubmed: 20697313
Cancer Lett. 2020 Jul 1;481:55-62
pubmed: 32251707
Magn Reson Med Sci. 2022 Jul 1;21(3):485-498
pubmed: 34176860
BMJ. 2020 Mar 18;368:m441
pubmed: 32188600
J Subst Abuse Treat. 2019 Feb;97:41-46
pubmed: 30577898
Eur Radiol. 2021 Apr;31(4):1819-1830
pubmed: 33006018
Mach Learn Med Imaging. 2020 Oct;12436:180-188
pubmed: 34327515
Radiology. 2018 Mar;286(3):800-809
pubmed: 29309734
Front Oncol. 2021 Jan 26;10:570465
pubmed: 33575207
J BUON. 2018 Dec;23(7):1-6
pubmed: 30722104