Network topological determinants of pathogen spread.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 05 2022
11 05 2022
Historique:
received:
04
01
2022
accepted:
12
04
2022
entrez:
11
5
2022
pubmed:
12
5
2022
medline:
18
5
2022
Statut:
epublish
Résumé
How do we best constrain social interactions to decrease transmission of communicable diseases? Indiscriminate suppression is unsustainable long term and presupposes that all interactions carry equal importance. Instead, transmission within a social network has been shown to be determined by its topology. In this paper, we deploy simulations to understand and quantify the impact on disease transmission of a set of topological network features, building a dataset of 9000 interaction graphs using generators of different types of synthetic social networks. Independently of the topology of the network, we maintain constant the total volume of social interactions in our simulations, to show how even with the same social contact some network structures are more or less resilient to the spread. We find a suitable intervention to be specific suppression of unfamiliar and casual interactions that contribute to the network's global efficiency. This is, pathogen spread is significantly reduced by limiting specific kinds of contact rather than their global number. Our numerical studies might inspire further investigation in connection to public health, as an integrative framework to craft and evaluate social interventions in communicable diseases with different social graphs or as a highlight of network metrics that should be captured in social studies.
Identifiants
pubmed: 35545647
doi: 10.1038/s41598-022-11786-5
pii: 10.1038/s41598-022-11786-5
pmc: PMC9095677
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7692Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Nat Hum Behav. 2020 Jun;4(6):588-596
pubmed: 32499576
Nature. 1998 Jun 4;393(6684):440-2
pubmed: 9623998
Nature. 2001 Jun 21;411(6840):907-8
pubmed: 11418846
Science. 2020 Jun 26;368(6498):1481-1486
pubmed: 32350060
Nat Commun. 2021 Jan 12;12(1):323
pubmed: 33436609
PLoS One. 2010 Jul 15;5(7):e11596
pubmed: 20657651
Science. 1999 Oct 15;286(5439):509-12
pubmed: 10521342
J R Soc Interface. 2007 Oct 22;4(16):879-91
pubmed: 17640863
Phys Rev Lett. 2001 Apr 2;86(14):3200-3
pubmed: 11290142
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026107
pubmed: 11863587
PLoS Comput Biol. 2011 Jun;7(6):e1002042
pubmed: 21673864
Science. 2020 May 1;368(6490):493-497
pubmed: 32213647
Nat Commun. 2019 Mar 4;10(1):1017
pubmed: 30833554
J R Soc Interface. 2009 Dec 6;6(41):1121-34
pubmed: 19324673
Infect Dis Model. 2021;6:36-45
pubmed: 33225114
PLoS Med. 2008 Mar 25;5(3):e74
pubmed: 18366252
Phys Rev Lett. 2001 Nov 5;87(19):198701
pubmed: 11690461