Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease.
Alzheimer Disease
/ pathology
Amyloid beta-Peptides
Amyloid beta-Protein Precursor
/ genetics
Amyloidogenic Proteins
Amyloidosis
/ complications
Animals
Disease Models, Animal
Humans
Mice
Mice, Transgenic
Neurodegenerative Diseases
/ complications
Plaque, Amyloid
Presenilin-1
/ genetics
tau Proteins
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 05 2022
11 05 2022
Historique:
received:
30
12
2021
accepted:
19
04
2022
entrez:
13
5
2022
pubmed:
14
5
2022
medline:
18
5
2022
Statut:
epublish
Résumé
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer's Disease at the early stages of the disease.
Identifiants
pubmed: 35546164
doi: 10.1038/s41598-022-11582-1
pii: 10.1038/s41598-022-11582-1
pmc: PMC9094605
doi:
Substances chimiques
Amyloid beta-Peptides
0
Amyloid beta-Protein Precursor
0
Amyloidogenic Proteins
0
Presenilin-1
0
tau Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7784Subventions
Organisme : Marie Curie
ID : 765549
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Cell. 2016 Jun 16;165(7):1789-1802
pubmed: 27238021
J Exp Med. 2014 Mar 10;211(3):387-93
pubmed: 24534188
Front Neurol. 2019 Nov 12;10:1151
pubmed: 31781019
Neurobiol Dis. 2009 Mar;33(3):369-78
pubmed: 19101630
Sci Rep. 2019 Mar 29;9(1):5380
pubmed: 30926900
IEEE Trans Med Imaging. 2010 Jan;29(1):196-205
pubmed: 19923044
J Exp Med. 2016 Nov 14;213(12):2635-2654
pubmed: 27810929
Brain. 2019 Apr 1;142(4):1051-1062
pubmed: 30847469
Front Aging Neurosci. 2018 Apr 16;10:101
pubmed: 29713274
Neuropsychobiology. 2012;66(4):201-20
pubmed: 23075830
Acta Neuropathol. 1991;82(4):239-59
pubmed: 1759558
Sci Rep. 2019 Nov 8;9(1):16363
pubmed: 31705038
Int J Alzheimers Dis. 2011 Apr 13;2011:539621
pubmed: 21584257
Neurobiol Aging. 2018 Mar;63:88-95
pubmed: 29245058
Front Aging Neurosci. 2017 Mar 24;9:71
pubmed: 28392767
Neuron. 2014 Dec 3;84(5):1023-33
pubmed: 25456500
PLoS One. 2012;7(2):e31302
pubmed: 22312444
Front Neurosci. 2020 Jun 30;14:660
pubmed: 32714136
EMBO Rep. 2013 Apr;14(4):389-94
pubmed: 23412472
Front Neurosci. 2015 May 29;9:184
pubmed: 26074756
J Neurosci. 2020 Sep 30;40(40):7668-7687
pubmed: 32859716
PLoS One. 2016 Feb 12;11(2):e0149587
pubmed: 26872349
Science. 2008 Sep 19;321(5896):1686-9
pubmed: 18802001
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9080-9085
pubmed: 28784767
Neural Plast. 2019 Jun 12;2019:6981268
pubmed: 31285742
J Neurosci. 2015 Jul 29;35(30):10851-65
pubmed: 26224867
Front Hum Neurosci. 2016 May 20;10:238
pubmed: 27242496
Prog Biophys Mol Biol. 2011 Mar;105(1-2):14-28
pubmed: 21034768
PLoS One. 2019 Jan 15;14(1):e0209228
pubmed: 30645585
J Alzheimers Dis. 2021 Aug 20;:
pubmed: 34420957
Cell Rep. 2015 Jan 13;10(2):292-305
pubmed: 25558063
Sci Rep. 2017 Oct 27;7(1):14189
pubmed: 29079799
ACS Chem Biol. 2009 Aug 21;4(8):673-84
pubmed: 19624097
Mol Neurodegener. 2017 Jan 13;12(1):5
pubmed: 28086931
Front Syst Neurosci. 2017 Jun 30;11:48
pubmed: 28713250
Chemistry. 2013 Jul 29;19(31):10179-92
pubmed: 23780508
Nat Commun. 2019 Jun 6;10(1):2479
pubmed: 31171783
Nat Rev Neurosci. 2016 Dec;17(12):777-792
pubmed: 27829687
J Neurochem. 2018 Mar;144(5):669-679
pubmed: 28777881
Nat Med. 2018 Jan;24(1):29-38
pubmed: 29200205
Neurobiol Dis. 2019 Jul;127:398-409
pubmed: 30878534
Mol Neurodegener. 2020 Sep 14;15(1):53
pubmed: 32921309
Cell. 2012 Apr 27;149(3):708-21
pubmed: 22541439
Nat Neurosci. 2018 Sep;21(9):1281-1289
pubmed: 30127430
Exp Neurol. 1975 Oct;49(1 Pt 1):58-85
pubmed: 1183532
Mol Psychiatry. 2020 Dec;25(12):3380-3398
pubmed: 31431685
Neurosci Lett. 1995 Apr 21;189(3):167-9
pubmed: 7624036
J Biol Chem. 2011 Apr 29;286(17):15317-31
pubmed: 21372138
Ann Neurol. 2016 Dec;80(6):858-870
pubmed: 27696483
Alzheimers Res Ther. 2020 Jul 15;12(1):84
pubmed: 32669112
Neurology. 2000 Oct 24;55(8):1224-7
pubmed: 11071507
Ann Neurol. 2004 Jul;56(1):27-35
pubmed: 15236399
Ann Neurol. 2010 Dec;68(6):865-75
pubmed: 21194156
Nat Neurosci. 2019 Jan;22(1):57-64
pubmed: 30559471
Neuron. 2012 May 10;74(3):467-74
pubmed: 22578498
Int J Mol Sci. 2020 Dec 07;21(23):
pubmed: 33297460
J Biol Chem. 2014 Jul 18;289(29):19855-61
pubmed: 24860099
Ann N Y Acad Sci. 2005 Jun;1048:427-9
pubmed: 16154967
Int J Alzheimers Dis. 2011;2011:535816
pubmed: 21760988
Nat Commun. 2020 May 26;11(1):2612
pubmed: 32457389
J Neurosci. 2009 Mar 18;29(11):3453-62
pubmed: 19295151
J Alzheimers Dis. 2018;64(4):1325-1336
pubmed: 29991134
EMBO Rep. 2006 Sep;7(9):940-6
pubmed: 16906128
Genes Brain Behav. 2014 Jun;13(5):488-500
pubmed: 24655396
Cell. 2014 Nov 6;159(4):896-910
pubmed: 25417164
J Comp Neurol. 2019 Sep 1;527(13):2122-2145
pubmed: 30311654
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2320-2324
pubmed: 29060362
J Neurophysiol. 2010 Aug;104(2):1195-210
pubmed: 20463205
Neurology. 2005 Aug 9;65(3):404-11
pubmed: 16087905
Neurology. 2002 Jun 25;58(12):1791-800
pubmed: 12084879
Brain. 2018 Aug 1;141(8):2500-2510
pubmed: 30060017
Comput Methods Programs Biomed. 2016 Sep;133:55-70
pubmed: 27393800