High-κ perovskite membranes as insulators for two-dimensional transistors.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2022
Historique:
received: 01 09 2021
accepted: 28 02 2022
entrez: 13 5 2022
pubmed: 14 5 2022
medline: 18 5 2022
Statut: ppublish

Résumé

The scaling of silicon metal-oxide-semiconductor field-effect transistors has followed Moore's law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents

Identifiants

pubmed: 35546188
doi: 10.1038/s41586-022-04588-2
pii: 10.1038/s41586-022-04588-2
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

262-267

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Theis, T. N. & Wong, H. P. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).
doi: 10.1109/MCSE.2017.29
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
pubmed: 31554977 doi: 10.1038/s41586-019-1573-9
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
doi: 10.1038/natrevmats.2016.52
Wong, H. & Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 138, 57–76 (2015).
doi: 10.1016/j.mee.2015.02.023
Badaroglu, M. et al. More Moore. In International Roadmap for Devices and Systems 2020 12 (IEEE, 2020); https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).
pubmed: 32636377 pmcid: 7341854 doi: 10.1038/s41467-020-16640-8
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 29, 3809–3826 (2017).
doi: 10.1021/acs.chemmater.6b05103
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).
doi: 10.1038/s41928-019-0334-y
Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).
pubmed: 32132712 doi: 10.1038/s41586-020-2009-2
Park, J. H. et al. Atomic layer deposition of Al
pubmed: 27305595 doi: 10.1021/acsnano.6b02648
Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).
doi: 10.1038/s41928-020-00529-x
Lee, G.-H. et al. Flexible and transparent MoS
pubmed: 23924287 doi: 10.1021/nn402954e
Vu, Q. A. et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS
doi: 10.1088/2053-1583/aab672
Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
doi: 10.1038/s41928-019-0256-8
Neville, R. C., Hoeneisen, B. & Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972).
doi: 10.1063/1.1661463
McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).
doi: 10.1103/PhysRevLett.81.3014
Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).
pubmed: 20432223 doi: 10.1002/adma.200904306
Couto, N. J. G., Sacépé, B. & Morpurgo, A. F. Transport through graphene on SrTiO
pubmed: 22182031 doi: 10.1103/PhysRevLett.107.225501
Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO
pubmed: 32054761 doi: 10.1126/science.aax8201
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).
pubmed: 16931719 doi: 10.1126/science.1131091
Caviglia, A. D. et al. Electric field control of the LaAlO
pubmed: 19052624 doi: 10.1038/nature07576
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
pubmed: 27618712 doi: 10.1038/nmat4749
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
pubmed: 32025010 doi: 10.1038/s41586-020-1939-z
Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).
pubmed: 17036000 doi: 10.1038/nature05148
Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).
doi: 10.1002/adfm.201803665
McPherson, J., Kim, J., Shanware, A., Mogul, H. & Rodriguez, J. Proposed universal relationship between dielectric breakdown and dielectric constant. In 2002 IEEE International Electron Devices Meeting (IEDM) 633–636 (IEEE, 2002).
Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2005).
doi: 10.1088/0034-4885/69/2/R02
Wen, C. et al. Dielectric properties of ultrathin CaF
doi: 10.1002/adma.202002525
Sokolov, N. S. et al. Low-leakage MIS structures with 1.5-6 nm CaF
doi: 10.1016/j.mee.2007.04.065
Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).
pubmed: 25549251 doi: 10.1021/nn506645q
Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).
pubmed: 26507400 doi: 10.1038/ncomms9662
Baumert, B. A. et al. Characterization of sputtered barium strontium titanate and strontium titanate-thin films. J. Appl. Phys. 82, 2558–2566 (1997).
doi: 10.1063/1.366066
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
pubmed: 30894723 doi: 10.1038/s41586-019-1013-x
Smets, Q. et al. Sources of variability in scaled MoS
Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).
pubmed: 31649196 doi: 10.1126/science.aay7221
Yu, L. et al. Enhancement-mode single-layer CVD MoS
Smets, Q. et al. Ultra-scaled MOCVD MoS
Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).
pubmed: 29768000 doi: 10.1021/acs.nanolett.8b01091
Qian, Q. et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS
pubmed: 27279454 pmcid: 4899804 doi: 10.1038/srep27676
Ashokbhai Patel, K., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS
doi: 10.1088/2053-1583/ab4ef0
English, C. D., Smithe, K. K. H., Xu, R. L. & Pop, E. Approaching ballistic transport in monolayer MoS
Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).
pubmed: 28092953 doi: 10.1021/acs.nanolett.6b04576
Nourbakhsh, A. et al. 15-nm channel length MoS
Knobloch, T. et al. A physical model for the hysteresis in MoS
doi: 10.1109/JEDS.2018.2829933
Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structure of SrTiO
doi: 10.1103/PhysRevB.17.4908
van Benthem, K., Elsässer, C. & French, R. H. Bulk electronic structure of SrTiO
doi: 10.1063/1.1415766
Wunderlich, W., Ohta, H. & Koumoto, K. Enhanced effective mass in doped SrTiO
doi: 10.1016/j.physb.2009.04.012
Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).
doi: 10.1063/1.122630
Vasquez, R. P. SrTiO
doi: 10.1116/1.1247683
Shi, Y. et al. Selective decoration of Au nanoparticles on monolayer MoS
pubmed: 23670611 pmcid: 3653143 doi: 10.1038/srep01839
Lewis, J. Material challenge for flexible organic devices. Mater. Today 9, 38–45 (2006).
doi: 10.1016/S1369-7021(06)71446-8

Auteurs

Jing-Kai Huang (JK)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia. jing-kai.huang1@student.unsw.edu.au.

Yi Wan (Y)

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.

Junjie Shi (J)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Ji Zhang (J)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Zeheng Wang (Z)

School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales, Australia.

Wenxuan Wang (W)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Ni Yang (N)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Yang Liu (Y)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Chun-Ho Lin (CH)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Xinwei Guan (X)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Long Hu (L)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Zi-Liang Yang (ZL)

Department of Physics, National Taiwan University, Taipei, Taiwan.
Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan.

Bo-Chao Huang (BC)

Department of Physics, National Taiwan University, Taipei, Taiwan.

Ya-Ping Chiu (YP)

Department of Physics, National Taiwan University, Taipei, Taiwan.
Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan.

Jack Yang (J)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Vincent Tung (V)

Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Danyang Wang (D)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Kourosh Kalantar-Zadeh (K)

School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Tom Wu (T)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.

Xiaotao Zu (X)

School of Physics, University of Electronic Science and Technology of China, Chengdu, China.

Liang Qiao (L)

School of Physics, University of Electronic Science and Technology of China, Chengdu, China.

Lain-Jong Li (LJ)

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. lanceli1@hku.hk.
Department of Physics, The University of Hong Kong, Hong Kong, China. lanceli1@hku.hk.

Sean Li (S)

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia. sean.li@unsw.edu.au.

Classifications MeSH