Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
01
03
2021
accepted:
23
03
2022
pubmed:
14
5
2022
medline:
20
5
2022
entrez:
13
5
2022
Statut:
ppublish
Résumé
We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10
Identifiants
pubmed: 35551307
doi: 10.1038/s41588-022-01058-3
pii: 10.1038/s41588-022-01058-3
pmc: PMC9179018
mid: NIHMS1792335
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
560-572Subventions
Organisme : Wellcome Trust
ID : 200837
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL142302
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL135818
Pays : United States
Organisme : Medical Research Council
ID : MC_U137686851
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : P30 DK020541
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_13049
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 203141
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK039311
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK093757
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK078616
Pays : United States
Organisme : NIA NIH HHS
ID : R00 AG066849
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00006/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L020149/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 086113
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 064890
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK114650
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK085545
Pays : United States
Organisme : Wellcome Trust
ID : 212946/Z/18/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 088158
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 101630
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 090532
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : K99 AG066849
Pays : United States
Organisme : Wellcome Trust
ID : 212284
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12026/2
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK098032
Pays : United States
Organisme : Wellcome Trust
ID : 212946
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL153805
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK072193
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG065357
Pays : United States
Organisme : Wellcome Trust
ID : 220457
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0700931
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 202922
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 072960
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 104085
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : U01 DK105535
Pays : United States
Organisme : Wellcome Trust
ID : 101033
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES030285
Pays : United States
Organisme : Wellcome Trust
ID : 098381
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00017/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 083948
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098051
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 212259
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : U01 DK078616
Pays : United States
Organisme : NIA NIH HHS
ID : U24 AG051129
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK105588
Pays : United States
Organisme : Wellcome Trust
ID : 085475
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L02036X/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200186
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0601966
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK090111
Pays : United States
Organisme : Wellcome Trust
ID : 095101
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 090367
Pays : United Kingdom
Organisme : NCATS NIH HHS
ID : UL1 TR001855
Pays : United States
Organisme : NHLBI NIH HHS
ID : R03 HL154284
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : UM1 DK078616
Pays : United States
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_14135
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200837/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 084723
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 106130
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098017
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098395
Pays : United Kingdom
Investigateurs
Sina Rüeger
(S)
Pietro Della Briotta Parolo
(P)
Yoonjung Yoonie Joo
(YY)
M Geoffrey Hayes
(MG)
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).
doi: 10.1016/S0140-6736(16)00618-8
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
doi: 10.1016/S0140-6736(16)31678-6
Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).
pubmed: 20581827
pmcid: 3080658
doi: 10.1038/ng.609
Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).
pubmed: 22885922
pmcid: 3442244
doi: 10.1038/ng.2383
Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
pubmed: 28566273
pmcid: 5652602
doi: 10.2337/db16-1253
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).
pubmed: 30297969
pmcid: 6287706
doi: 10.1038/s41588-018-0241-6
Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014).
pubmed: 25043022
doi: 10.1038/nature13425
Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).
pubmed: 28366442
pmcid: 5384097
doi: 10.1016/j.ajhg.2017.03.004
Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).
pubmed: 30718926
doi: 10.1038/s41588-018-0332-4
Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).
pubmed: 32499647
pmcid: 7292783
doi: 10.1038/s41586-020-2263-3
Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).
pubmed: 32541925
pmcid: 7343592
doi: 10.1038/s41588-020-0637-y
The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
pmcid: 3498066
doi: 10.1038/nature11632
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).
pubmed: 28911207
pmcid: 5755684
doi: 10.1093/hmg/ddx280
Chen, M.-H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 (2020).
pubmed: 32888493
pmcid: 7480402
doi: 10.1016/j.cell.2020.06.045
Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).
pubmed: 29632382
pmcid: 5898373
doi: 10.1038/s41588-018-0084-1
Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).
pubmed: 28193859
pmcid: 5338551
doi: 10.1073/pnas.1621192114
Zhao, F. et al. Nodal induces apoptosis through activation of the ALK7 signaling pathway in pancreatic INS-1 β-cells. Am. J. Physiol. Endocrinol. Metab. 303, E132–E143 (2012).
pubmed: 22550067
pmcid: 3404563
doi: 10.1152/ajpendo.00074.2012
Emdin, C. A. et al. DNA sequence variation in ACVR1C encoding the activin receptor-like kinase 7 influences body fat distribution and protects against type 2 diabetes. Diabetes 68, 226–234 (2019).
pubmed: 30389748
doi: 10.2337/db18-0857
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488
pmcid: 6697541
doi: 10.1038/s41586-018-0175-2
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
pmcid: 5776756
doi: 10.1038/nature24277
Vinuela, A. et al. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat. Commun. 11, 4912 (2020).
pubmed: 32999275
pmcid: 7528108
doi: 10.1038/s41467-020-18581-8
Giambartolomei, C. et al. Bayesian test for colocalization between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).
pubmed: 26624892
pmcid: 4666611
doi: 10.1371/journal.pgen.1005694
Roman, T. S. et al. A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus. Diabetes 66, 2521–2530 (2017).
pubmed: 28684635
pmcid: 5860374
doi: 10.2337/db17-0464
Carrat, G. R. et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am. J. Hum. Genet. 100, 238–256 (2017).
pubmed: 28132686
pmcid: 5294761
doi: 10.1016/j.ajhg.2017.01.011
Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018).
pubmed: 29632379
pmcid: 5935235
doi: 10.1038/s41588-018-0088-x
Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).
pubmed: 29412141
pmcid: 5828664
doi: 10.7554/eLife.31977
Pan, D. Z. et al. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat. Commun. 9, 1512 (2018).
pubmed: 29666371
pmcid: 5904163
doi: 10.1038/s41467-018-03554-9
Miguel-Escalada, I. et al. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat. Genet. 51, 1137–1148 (2019).
pubmed: 31253982
pmcid: 6640048
doi: 10.1038/s41588-019-0457-0
Chesi, A. et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 10, 1260 (2019).
pubmed: 30890710
pmcid: 6425012
doi: 10.1038/s41467-019-09302-x
Chiou, J. et al. Single-cell chromatin accessibility reveals pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat. Genet. 53, 455–466 (2021).
pubmed: 33795864
pmcid: 9037575
doi: 10.1038/s41588-021-00823-0
Esteghamat, F. et al. CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nat. Genet. 51, 1233–1243 (2019).
pubmed: 31358993
pmcid: 6675645
doi: 10.1038/s41588-019-0470-3
Ng, N. H. J. et al. Tissue-specific alteration of metabolic pathways influences glycemic regulation. Preprint at bioRxiv https://doi.org/10.1101/790618 (2019).
Gloyn, A. L. Exocrine or endocrine? A circulating pancreatic elastase that regulates glucose homeostasis. Nat. Metab. 1, 853–855 (2019).
pubmed: 32694741
doi: 10.1038/s42255-019-0107-y
Wesolowska-Andersen, A. et al. Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals. eLife 9, e51503 (2020).
pubmed: 31985400
pmcid: 7007221
doi: 10.7554/eLife.51503
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
pubmed: 30926966
pmcid: 6563838
doi: 10.1038/s41588-019-0379-x
Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).
pubmed: 32273609
doi: 10.1038/s41591-020-0800-0
Ayub, Q. et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am. J. Hum. Genet. 94, 176–185 (2014).
pubmed: 24412096
pmcid: 3928649
doi: 10.1016/j.ajhg.2013.12.010
Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. Am. J. Hum. Genet. 14, 353–362 (1962).
pubmed: 13937884
pmcid: 1932342
Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).
pubmed: 31477933
pmcid: 7610517
doi: 10.1038/s41588-019-0484-x
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Chen, R. et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 8, e1002621 (2012).
pubmed: 22511877
pmcid: 3325177
doi: 10.1371/journal.pgen.1002621
Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).
pubmed: 35420968
doi: 10.1126/science.abm7530
Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975 (2021).
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819
pmcid: 7875770
doi: 10.1038/s41586-021-03205-y
Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).
pubmed: 28933420
pmcid: 5607473
doi: 10.1038/sdata.2017.115
Mitt, M. et al. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur. J. Hum. Genet. 25, 869–876 (2017).
pubmed: 28401899
pmcid: 5520064
doi: 10.1038/ejhg.2017.51
Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).
pubmed: 30718733
pmcid: 6361960
doi: 10.1038/s41598-018-37832-9
Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2016).
pubmed: 27848946
pmcid: 5237383
doi: 10.1038/ejhg.2016.150
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
pubmed: 11315092
doi: 10.1111/j.0006-341X.1999.00997.x
Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).
pubmed: 31235872
doi: 10.1038/s41576-019-0144-0
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).
pubmed: 21565292
pmcid: 3146723
doi: 10.1016/j.ajhg.2011.04.014
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Sobota, R. S. et al. Addressing population-specific multiple testing burdens in genetic association studies. Ann. Hum. Genet. 79, 136–147 (2015).
pubmed: 25644736
pmcid: 4334751
doi: 10.1111/ahg.12095
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
doi: 10.1080/01621459.1995.10476572
Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
pubmed: 23104008
pmcid: 3791416
doi: 10.1038/ng.2435
Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 22, 1760–1774 (2012).
pubmed: 22955987
pmcid: 3431492
doi: 10.1101/gr.135350.111
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).
pubmed: 24413736
pmcid: 3935450
doi: 10.1038/ng.2870
Pickrell, J. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
pubmed: 24702953
pmcid: 3980523
doi: 10.1016/j.ajhg.2014.03.004
Wakefield, J. A. Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).
pubmed: 17668372
pmcid: 1950810
doi: 10.1086/519024
Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121, 3589–3597 (2011).
pubmed: 21865645
pmcid: 3163974
doi: 10.1172/JCI58447