[Immunopathogenesis of systemic lupus erythematosus].
Immunpathogenese des systemischen Lupus erythematodes.
Antibodies
BLyS/BAFF
Immune complexes
Interferon
Plasma cells
Journal
Zeitschrift fur Rheumatologie
ISSN: 1435-1250
Titre abrégé: Z Rheumatol
Pays: Germany
ID NLM: 0414162
Informations de publication
Date de publication:
13 May 2022
13 May 2022
Historique:
accepted:
13
04
2022
entrez:
13
5
2022
pubmed:
14
5
2022
medline:
14
5
2022
Statut:
aheadofprint
Résumé
Insights into the immunopathogenesis of systemic lupus erythematosus (SLE) help to understand the complex disease patterns and to develop new treatment strategies. The disease manifestations essentially result from autoantibodies, immune complexes and cytokines. Particularly the propensity towards developing various autoantibodies is central to the disease itself; autoantibody specificities lead to highly variable organ manifestations. This review article delineates the clinically relevant state of knowledge on SLE pathogenesis, with the goal to establish a model useful for clinical practice, which also helps to classify the novel therapeutic approaches. Das Verständnis der Immunpathogenese des systemischen Lupus erythematodes (SLE) hilft, das komplexe Krankheitsgeschehen zu verstehen und neue Therapiestrategien zu entwickeln. Die Krankheitsmanifestationen des SLE sind im Wesentlichen Folge von Autoantikörpern, Immunkomplexen und Zytokinen. Insbesondere die Neigung zu unterschiedlichen Autoantikörpern macht das Wesen der Erkrankung aus; die genauen Spezifitäten der Autoantikörper führen zu ganz unterschiedlichen Organmanifestationen. Diese Übersichtsarbeit stellt den klinisch relevanten Stand des Wissens zur SLE-Pathogenese dar – mit dem Ziel, ein für den klinischen Einsatz nützliches Modell zu etablieren, das auch hilft, die neuen Therapieansätze einzuordnen.
Autres résumés
Type: Publisher
(ger)
Das Verständnis der Immunpathogenese des systemischen Lupus erythematodes (SLE) hilft, das komplexe Krankheitsgeschehen zu verstehen und neue Therapiestrategien zu entwickeln. Die Krankheitsmanifestationen des SLE sind im Wesentlichen Folge von Autoantikörpern, Immunkomplexen und Zytokinen. Insbesondere die Neigung zu unterschiedlichen Autoantikörpern macht das Wesen der Erkrankung aus; die genauen Spezifitäten der Autoantikörper führen zu ganz unterschiedlichen Organmanifestationen. Diese Übersichtsarbeit stellt den klinisch relevanten Stand des Wissens zur SLE-Pathogenese dar – mit dem Ziel, ein für den klinischen Einsatz nützliches Modell zu etablieren, das auch hilft, die neuen Therapieansätze einzuordnen.
Identifiants
pubmed: 35551439
doi: 10.1007/s00393-022-01214-4
pii: 10.1007/s00393-022-01214-4
doi:
Types de publication
English Abstract
Journal Article
Langues
ger
Sous-ensembles de citation
IM
Informations de copyright
© 2022. The Author(s).
Références
Kamen DL (2014) Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin North Am 40:401–412
pubmed: 25034153
pmcid: 4198387
doi: 10.1016/j.rdc.2014.05.003
Kwon YC, Chun S, Kim K et al (2019) Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond. Cells 8(10):1180. https://doi.org/10.3390/cells8101180
doi: 10.3390/cells8101180
pmcid: 6829439
Aringer M, Brinks R, Dörner T et al (2021) European league against rheumatism (EULAR)/American college of rheumatology (ACR) SLE classification criteria item performance. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-219373
doi: 10.1136/annrheumdis-2020-219373
pubmed: 34509989
Schmajuk G, Hoyer BF, Aringer M et al (2018) Multicenter Delphi exercise to identify important key items for classifying systemic lupus erythematosus. Arthritis Care Res (Hoboken) 70:1488–1494
doi: 10.1002/acr.23503
Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121
pubmed: 22129255
doi: 10.1056/NEJMra1100359
Cervera R, Khamashta MA, Font J et al (1993) Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. The European working party on systemic lupus erythematosus. Medicine (Baltimore) 72:113–124
doi: 10.1097/00005792-199303000-00005
Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939
pubmed: 18305268
doi: 10.1056/NEJMra071297
Pisetsky DS (2020) Evolving story of autoantibodies in systemic lupus erythematosus. J Autoimmun 110:102356
pubmed: 31810857
doi: 10.1016/j.jaut.2019.102356
Rekvig OP (2019) The dsDNA, anti-dsDNA antibody, and lupus nephritis: what we agree on, what must be done, and what the best strategy forward could be. Front Immunol 10:1104
pubmed: 31156647
pmcid: 6529578
doi: 10.3389/fimmu.2019.01104
Olsen NJ, Li QZ, Quan J et al (2012) Autoantibody profiling to follow evolution of lupus syndromes. Arthritis Res Ther 14:R174
pubmed: 22838636
pmcid: 3580568
doi: 10.1186/ar3927
Aringer M, Vital E (2013) Lots of autoantibodies equal lupus? Arthritis Res Ther 15:102
pubmed: 23347779
pmcid: 3672808
doi: 10.1186/ar4126
Elkon K, Casali P (2008) Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 4:491–498
pubmed: 18756274
pmcid: 2703183
doi: 10.1038/ncprheum0895
Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18:716–724
pubmed: 28632714
pmcid: 5791156
doi: 10.1038/ni.3731
Yang F, He Y, Zhai Z et al (2019) Programmed cell death pathways in the pathogenesis of systemic lupus erythematosus. J Immunol Res 2019:3638562
pubmed: 31871956
pmcid: 6913273
Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu Rev Immunol 36:489–517
pubmed: 29400998
doi: 10.1146/annurev-immunol-042617-053010
Hile GA, Kahlenberg JM (2021) Immunopathogenesis of skin injury in systemic lupus erythematosus. Curr Opin Rheumatol 33:173–180
pubmed: 33315653
pmcid: 8208233
doi: 10.1097/BOR.0000000000000770
Urbonaviciute V, Fürnrohr BG, Meister S et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018
pubmed: 19064698
pmcid: 2605236
doi: 10.1084/jem.20081165
Carroll MC (2000) The role of complement in B cell activation and tolerance. Adv Immunol 74(61–88):61–88
pubmed: 10605604
Demirkaya E, Sahin S, Romano M et al (2020) New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease: monogenic lupus and beyond. J Clin Med 9(3):712. https://doi.org/10.3390/jcm9030712
doi: 10.3390/jcm9030712
pmcid: 7141186
Jeremic I, Djuric O, Nikolic M et al (2019) Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosus. Rheumatol Int 39:1849–1857
pubmed: 31444555
doi: 10.1007/s00296-019-04426-1
Mistry P, Kaplan MJ (2017) Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol 185:59–73
pubmed: 27519955
doi: 10.1016/j.clim.2016.08.010
Hakkim A, Fürnrohr BG, Amann K et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813–9818
pubmed: 20439745
pmcid: 2906830
doi: 10.1073/pnas.0909927107
Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3:380
pubmed: 23248629
pmcid: 3521997
doi: 10.3389/fimmu.2012.00380
Stummvoll GH, Fritsch RD, Meyer B et al (2009) Characterisation of cellular and humoral autoimmune responses to histone H1 and core histones in human systemic lupus erythaematosus. Ann Rheum Dis 68:110–116
pubmed: 18375534
doi: 10.1136/ard.2007.082032
Voll RE, Roth EA, Girkontaite I et al (1997) Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum 40:2162–2171
pubmed: 9416853
doi: 10.1002/art.1780401210
Furie RA, Bruce IN, Dörner T et al (2021) Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology (Oxford) 60(11):5397–5407
doi: 10.1093/rheumatology/keab381
Humrich JY, von Spee-Mayer C, Siegert E et al (2015) Rapid induction of clinical remission by low-dose interleukin‑2 in a patient with refractory SLE. Ann Rheum Dis 74:791–792
pubmed: 25609413
doi: 10.1136/annrheumdis-2014-206506
He J, Zhang R, Shao M et al (2020) Efficacy and safety of low-dose IL‑2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 79:141–149
pubmed: 31537547
doi: 10.1136/annrheumdis-2019-215396
Chen PM, Tsokos GC (2021) T cell abnormalities in the pathogenesis of systemic lupus erythematosus: an update. Curr Rheumatol Rep 23:12
pubmed: 33512577
pmcid: 8601587
doi: 10.1007/s11926-020-00978-5
von Spee-Mayer C, Siegert E, Abdirama D et al (2016) Low-dose interleukin‑2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis 75:1407–1415
doi: 10.1136/annrheumdis-2015-207776
Jog NR, James JA (2020) Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol 11:623944
pubmed: 33613559
doi: 10.3389/fimmu.2020.623944
James JA, Kaufman KM, Farris AD et al (1997) An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100:3019–3026
pubmed: 9399948
pmcid: 508514
doi: 10.1172/JCI119856
Theodorou E, Nezos A, Antypa E et al (2018) B‑cell activating factor and related genetic variants in lupus related atherosclerosis. J Autoimmun 92:87–92
pubmed: 29859654
doi: 10.1016/j.jaut.2018.05.002
Zhang J, Roschke V, Baker KP et al (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166:6–10
pubmed: 11123269
doi: 10.4049/jimmunol.166.1.6
Ritterhouse LL, Crowe SR, Niewold TB et al (2011) B lymphocyte stimulator levels in systemic lupus erythematosus: higher circulating levels in African American patients and increased production after influenza vaccination in patients with low baseline levels. Arthritis Rheum 63:3931–3941
pubmed: 22127709
pmcid: 3234134
doi: 10.1002/art.30598
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J et al (2019) The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 234:17050–17063
pubmed: 30941763
doi: 10.1002/jcp.28445
Malkiel S, Barlev AN, Atisha-Fregoso Y et al (2018) Plasma cell differentiation pathways in systemic lupus erythematosus. Front Immunol 9:427
pubmed: 29556239
pmcid: 5845388
doi: 10.3389/fimmu.2018.00427
Alexander T, Radbruch A, Hiepe F (2015) Pathogenesis of systemic lupus erythematosus. Z Rheumatol 74:183–190
pubmed: 25854151
doi: 10.1007/s00393-014-1456-2
Hiepe F, Radbruch A (2016) Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 12:232–240
pubmed: 26923204
doi: 10.1038/nrneph.2016.20
Starke C, Frey S, Wellmann U et al (2011) High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 41:2107–2112
pubmed: 21484784
doi: 10.1002/eji.201041315
Espeli M, Bökers S, Giannico G et al (2011) Local renal autoantibody production in lupus nephritis. J Am Soc Nephrol 22:296–305
pubmed: 21088295
pmcid: 3029902
doi: 10.1681/ASN.2010050515
Neely J, von Scheven E (2018) Autoimmune haemolytic anaemia and autoimmune thrombocytopenia in childhood-onset systemic lupus erythematosus: updates on pathogenesis and treatment. Curr Opin Rheumatol 30:498–505
pubmed: 29979258
doi: 10.1097/BOR.0000000000000523
Fayyaz A, Igoe A, Kurien BT et al (2015) Haematological manifestations of lupus. Lupus Sci Med 2:e78
pubmed: 25861458
pmcid: 4378375
doi: 10.1136/lupus-2014-000078
Mader S, Jeganathan V, Arinuma Y et al (2018) Understanding the antibody repertoire in neuropsychiatric systemic lupus erythematosus and neuromyelitis optica spectrum disorder: do they share common targets? Arthritis Rheumatol 70:277–286
pubmed: 29073350
doi: 10.1002/art.40356
Moraitis E, Stathopoulos Y, Hong Y et al (2019) Aquaporin‑4 IgG antibody-related disorders in patients with juvenile systemic lupus erythematosus. Lupus 28:1243–1249
pubmed: 31213132
doi: 10.1177/0961203319855125
Chighizola CB, Meroni PL (2018) Thrombosis and anti-phospholipid syndrome: a 5-year update on treatment. Curr Rheumatol Rep 20:44
pubmed: 29850957
doi: 10.1007/s11926-018-0741-5
Radic M, Pattanaik D (2018) Cellular and molecular mechanisms of anti-phospholipid syndrome. Front Immunol 9:969
pubmed: 29867951
pmcid: 5949565
doi: 10.3389/fimmu.2018.00969
Choi MY, Fitzpatrick RD, Buhler K et al (2020) A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun Rev 19:102463
pubmed: 31927088
doi: 10.1016/j.autrev.2020.102463
Goilav B, Putterman C (2015) The role of anti-DNA antibodies in the development of lupus nephritis: a complementary, or alternative, viewpoint? Semin Nephrol 35:439–443
pubmed: 26573546
pmcid: 4662078
doi: 10.1016/j.semnephrol.2015.08.005
Stavropoulos PG, Goules AV, Avgerinou G et al (2008) Pathogenesis of subacute cutaneous lupus erythematosus. J Eur Acad Dermatol Venereol 22:1281–1289
pubmed: 18540991
doi: 10.1111/j.1468-3083.2008.02806.x
Alniemi DT, Gutierrez A Jr., Drage LA et al (2017) Subacute cutaneous lupus erythematosus: clinical characteristics, disease associations, treatments, and outcomes in a series of 90 patients at mayo clinic, 1996–2011. Mayo Clin Proc 92:406–414
pubmed: 28185656
doi: 10.1016/j.mayocp.2016.10.030
Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054
pubmed: 9461440
doi: 10.1126/science.279.5353.1052
Weinstein A, Alexander RV, Zack DJ (2021) A review of complement activation in SLE. Curr Rheumatol Rep 23:16
pubmed: 33569681
pmcid: 7875837
doi: 10.1007/s11926-021-00984-1
Aringer M, Smolen JS (2012) Therapeutic blockade of TNF in patients with SLE-promising or crazy? Autoimmun Rev 11:321–325
pubmed: 21619949
doi: 10.1016/j.autrev.2011.05.001
Berger S, Balló H, Stutte HJ (1996) Immune complex-induced interleukin‑6, interleukin-10 and prostaglandin secretion by human monocytes: a network of pro- and anti-inflammatory cytokines dependent on the antigen:antibody ratio. Eur J Immunol 26:1297–1301
pubmed: 8647208
doi: 10.1002/eji.1830260618
López P, Scheel-Toellner D, Rodríguez-Carrio J et al (2014) Interferon-α-induced B‑lymphocyte stimulator expression and mobilization in healthy and systemic lupus erthymatosus monocytes. Rheumatology (Oxford) 53:2249–2258
doi: 10.1093/rheumatology/keu249
Aringer M, Houssiau F, Gordon C et al (2009) Adverse events and efficacy of TNF-alpha blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology (Oxford) 48:1451–1454
doi: 10.1093/rheumatology/kep270
Cortes-Hernandez J, Egri N, Vilardell-Tarres M et al (2015) Etanercept in refractory lupus arthritis: an observational study. Semin Arthritis Rheum 44:672–679
pubmed: 25712812
doi: 10.1016/j.semarthrit.2015.01.006
Illei GG, Shirota Y, Yarboro CH et al (2010) Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum 62:542–552
pubmed: 20112381
pmcid: 3057537
doi: 10.1002/art.27221
Cambridge G, Isenberg DA, Edwards JC et al (2008) B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann Rheum Dis 67:1011–1016
pubmed: 17962238
doi: 10.1136/ard.2007.079418
Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377:721–731
pubmed: 21296403
doi: 10.1016/S0140-6736(10)61354-2
van Vollenhoven RF, Navarra SV, Levy RA et al (2020) Long-term safety and limited organ damage in patients with systemic lupus erythematosus treated with belimumab: a phase III study extension. Rheumatology (Oxford) 59:281–291
doi: 10.1093/rheumatology/kez279
Isenberg D, Gordon C, Licu D et al (2015) Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis 74:2006–2015
pubmed: 24951103
doi: 10.1136/annrheumdis-2013-205067
Hua J, Kirou K, Lee C et al (2006) Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum 54:1906–1916
pubmed: 16736505
doi: 10.1002/art.21890
Blanco P, Palucka AK, Gill M et al (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–1543
pubmed: 11711679
doi: 10.1126/science.1064890
Furie R, Khamashta M, Merrill JT et al (2017) Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol 69:376–386
pubmed: 28130918
pmcid: 5299497
doi: 10.1002/art.39962
Khamashta M, Merrill JT, Werth VP et al (2016) Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(11):1909–1916
pubmed: 27009916
doi: 10.1136/annrheumdis-2015-208562
Sarkar MK, Hile GA, Tsoi LC et al (2018) Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 77:1653–1664
pubmed: 30021804
doi: 10.1136/annrheumdis-2018-213197
Vial T, Descotes J (1995) Immune-mediated side-effects of cytokines in humans. Toxicology 105:31–57
pubmed: 8638283
doi: 10.1016/0300-483X(95)03124-X