Bioinformatics-Based Approaches to Study Virus-Host Interactions During SARS-CoV-2 Infection.
Protein domain interaction
Protein interaction networks
SARS-CoV-2 virus
Structural bioinformatics
Virus–host protein–protein interactions
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
13
5
2022
pubmed:
14
5
2022
medline:
18
5
2022
Statut:
ppublish
Résumé
As the knowledge of biomolecules is increasing from the last decades, it is helping the researchers to understand the unsolved issues regarding virology. Recent technologies in high-throughput sequencing are providing the swift generation of SARS-CoV-2 genomic data with the basic inside of viral infection. Owing to various virus-host protein interactions, high-throughput technologies are unable to provide complete details of viral pathogenesis. Identifying the virus-host protein interactions using bioinformatics approaches can assist in understanding the mechanism of SARS-CoV-2 infection and pathogenesis. In this chapter, recent integrative bioinformatics approaches are discussed to help the virologists and computational biologists in the identification of structurally similar proteins of human and SARS-CoV-2 virus, and to predict the potential of virus-host interactions. Considering experimental and time limitations for effective viral drug development, computational aided drug design (CADD) can reduce the gap between drug prediction and development. More research with respect to evolutionary solutions could be helpful to make a new pipeline for virus-host protein-protein interactions and provide more understanding to disclose the cases of host switch, and also expand the virulence of the pathogen and host range in developing viral infections.
Identifiants
pubmed: 35554909
doi: 10.1007/978-1-0716-2111-0_13
doi:
Substances chimiques
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
197-212Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502. https://doi.org/10.1016/j.tim.2016.03.003
doi: 10.1016/j.tim.2016.03.003
pubmed: 27012512
pmcid: 7125511
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R (2021) Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls Publishing LLC, Copyright © 2021, Treasure Island (FL)
Zhong NS, Zheng BJ, Li YM, Poon XZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Peiris GY (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, people’s Republic of China, in February, 2003. Lancet 362(9393):1353–1358. https://doi.org/10.1016/s0140-6736(03)14630-2
doi: 10.1016/s0140-6736(03)14630-2
pubmed: 14585636
pmcid: 7112415
Bradburne AF, Bynoe ML, Tyrrell DA (1967) Effects of a “new” human respiratory virus in volunteers. Br Med J 3(5568):767–769. https://doi.org/10.1136/bmj.3.5568.767
doi: 10.1136/bmj.3.5568.767
pubmed: 6043624
pmcid: 1843247
Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349(25):2431–2441. https://doi.org/10.1056/NEJMra032498
doi: 10.1056/NEJMra032498
pubmed: 14681510
Rehman SU, Shafique L, Ihsan A, Liu Q (2020) Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens 9(3). https://doi.org/10.3390/pathogens9030240
van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6). https://doi.org/10.1128/mBio.00473-12
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, DSC H, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for C (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032
doi: 10.1056/NEJMoa2002032
pubmed: 32109013
World Health Organization (WHO), (2020) WHO- Coronavirus disease (COVID-19) pandemic report https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102(22):7988–7993. https://doi.org/10.1073/pnas.0409465102
doi: 10.1073/pnas.0409465102
pubmed: 15897467
pmcid: 1142358
Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106(14):5871–5876. https://doi.org/10.1073/pnas.0809524106
doi: 10.1073/pnas.0809524106
pubmed: 19321428
pmcid: 2660061
Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S (2006) Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103(34):12885–12890. https://doi.org/10.1073/pnas.0603144103
doi: 10.1073/pnas.0603144103
pubmed: 16912115
pmcid: 1568942
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B, Kaufman H (2020) Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med 18(1):257. https://doi.org/10.1186/s12967-020-02430-9
doi: 10.1186/s12967-020-02430-9
pubmed: 32586380
pmcid: 7315012
Ujike M, Taguchi F (2015) Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7(4):1700–1725. https://doi.org/10.3390/v7041700
doi: 10.3390/v7041700
pubmed: 25855243
pmcid: 4411675
Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85(9):4122–4134. https://doi.org/10.1128/JVI.02232-10
doi: 10.1128/JVI.02232-10
pubmed: 21325420
pmcid: 3126222
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
doi: 10.1016/S0140-6736(20)30211-7
pubmed: 32007143
pmcid: 7135076
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State -nCo VCIT (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382 (10):929-936. https://doi.org/10.1056/NEJMoa2001191
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0
doi: 10.1038/s41422-020-0282-0
pubmed: 32020029
pmcid: 7054408
Low ZY, Farouk IA, Lal SK (2020) Drug repositioning: new approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 12(9). https://doi.org/10.3390/v12091058
Hufsky F, Lamkiewicz K, Almeida A, Aouacheria A, Arighi C, Bateman A, Baumbach J, Beerenwinkel N, Brandt C, Cacciabue M, Chuguransky S, Drechsel O, Finn RD, Fritz A, Fuchs S, Hattab G, Hauschild AC, Heider D, Hoffmann M, Holzer M, Hoops S, Kaderali L, Kalvari I, von Kleist M, Kmiecinski R, Kuhnert D, Lasso G, Libin P, List M, Lochel HF, Martin MJ, Martin R, Matschinske J, McHardy AC, Mendes P, Mistry J, Navratil V, Nawrocki EP, O'Toole AN, Ontiveros-Palacios N, Petrov AI, Rangel-Pineros G, Redaschi N, Reimering S, Reinert K, Reyes A, Richardson L, Robertson DL, Sadegh S, Singer JB, Theys K, Upton C, Welzel M, Williams L, Marz M (2021) Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief Bioinform 22(2):642–663. https://doi.org/10.1093/bib/bbaa232
doi: 10.1093/bib/bbaa232
pubmed: 33147627
Moore JH, Barnett I, Boland MR, Chen Y, Demiris G, Gonzalez-Hernandez G, Herman DS, Himes BE, Hubbard RA, Kim D, Morris JS, Mowery DL, Ritchie MD, Shen L, Urbanowicz R, Holmes JH (2020) Ideas for how informaticians can get involved with COVID-19 research. BioData Mining 13(1):3. https://doi.org/10.1186/s13040-020-00213-y
doi: 10.1186/s13040-020-00213-y
pubmed: 32419848
pmcid: 7216865
Huang X, He C, Hua X, Kan A, Sun S, Wang J, Li S (2020) Bioinformatic analysis of correlation between immune infiltration and COVID-19 in cancer patients. Int J Biol Sci 16(13):2464–2476. https://doi.org/10.7150/ijbs.48639
doi: 10.7150/ijbs.48639
pubmed: 32760213
pmcid: 7378636
Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27(1):119–129. https://doi.org/10.1038/cr.2016.152
doi: 10.1038/cr.2016.152
pubmed: 28008928
Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355. https://doi.org/10.1093/nar/gkw357
doi: 10.1093/nar/gkw357
pubmed: 27131377
pmcid: 4987910
JAlmagro Armenteros JJ, Sonderby CK, Sonderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21):3387–3395. https://doi.org/10.1093/bioinformatics/btx431
doi: 10.1093/bioinformatics/btx431
Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4(2):e32. https://doi.org/10.1371/journal.ppat.0040032
doi: 10.1371/journal.ppat.0040032
pubmed: 18282095
pmcid: 2242834
Bailer SM, Haas J (2009) Connecting viral with cellular interactomes. Curr Opin Microbiol 12(4):453–459. https://doi.org/10.1016/j.mib.2009.06.004
doi: 10.1016/j.mib.2009.06.004
pubmed: 19632888
pmcid: 7108267
Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36(Pt 6):1398–1403. https://doi.org/10.1042/BST0361398
doi: 10.1042/BST0361398
pubmed: 19021563
pmcid: 7243876
Zheng LL, Li C, Ping J, Zhou Y, Li Y, Hao P (2014) The domain landscape of virus-host interactomes. Biomed Res Int 2014:867235. https://doi.org/10.1155/2014/867235
doi: 10.1155/2014/867235
pubmed: 24991570
pmcid: 4065681
Dyer MD, Murali TM, Sobral BW (2011) Supervised learning and prediction of physical interactions between human and HIV proteins. Infect Genet Evol 11(5):917–923. https://doi.org/10.1016/j.meegid.2011.02.022
doi: 10.1016/j.meegid.2011.02.022
pubmed: 21382517
pmcid: 3134873
Brito AF, Pinney JW (2017) Protein-protein interactions in virus-host systems. Front Microbiol 8:1557. https://doi.org/10.3389/fmicb.2017.01557
doi: 10.3389/fmicb.2017.01557
pubmed: 28861068
pmcid: 5562681
Navratil V, de Chassey B, Meyniel L, Delmotte S, Gautier C, Andre P, Lotteau V, Rabourdin-Combe C (2009) VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus-host interaction networks. Nucleic Acids Res 37(Database issue):D661–D668. https://doi.org/10.1093/nar/gkn794
doi: 10.1093/nar/gkn794
pubmed: 18984613
Gardner MR, Fellinger CH, Kattenhorn LM, Davis-Gardner ME, Weber JA, Alfant B, Zhou AS, Prasad NR, Kondur HR, Newton WA, Weisgrau KL, Rakasz EG, Lifson JD, Gao G, Schultz-Darken N, Farzan M (2019) AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci Transl Med 11(502). https://doi.org/10.1126/scitranslmed.aau5409
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079
doi: 10.1093/nar/gky1079
pubmed: 30476227
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539. https://doi.org/10.1093/nar/gkj109
doi: 10.1093/nar/gkj109
pubmed: 16381927
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. https://doi.org/10.1093/nar/gkq973
doi: 10.1093/nar/gkq973
pubmed: 21045058
Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35(3):235–241. https://doi.org/10.1128/br.35.3.235-241.1971
doi: 10.1128/br.35.3.235-241.1971
pubmed: 4329869
pmcid: 378387
Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14(2):208–216. https://doi.org/10.1016/j.sbi.2004.03.011
doi: 10.1016/j.sbi.2004.03.011
pubmed: 15093836
Apic G, Gough J, Teichmann SA (2001) An insight into domain combinations. Bioinformatics 17(Suppl 1):S83–S89. https://doi.org/10.1093/bioinformatics/17.suppl_1.s83
doi: 10.1093/bioinformatics/17.suppl_1.s83
pubmed: 11472996
Lee H, Deng M, Sun F, Chen T (2006) An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 7:269. https://doi.org/10.1186/1471-2105-7-269
doi: 10.1186/1471-2105-7-269
pubmed: 16725050
pmcid: 1481624
Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R (2011) DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 39(Database issue):D730–D735. https://doi.org/10.1093/nar/gkq1229
doi: 10.1093/nar/gkq1229
pubmed: 21113022
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481
doi: 10.1093/nar/gki481
pubmed: 15980490
pmcid: 1160241
Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. https://doi.org/10.1002/prot.10389
doi: 10.1002/prot.10389
pubmed: 12784371
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127
doi: 10.1093/protein/8.2.127
pubmed: 7630882
Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572. https://doi.org/10.2174/156802608786786624
doi: 10.2174/156802608786786624
pubmed: 19075767
W.L. Delano, The PyMOL molecular graphics system, schrodinger. (2002). http://www.pymol.sourceforge.net
Byrum S, Smart SK, Larson S, Tackett AJ (2012) Analysis of stable and transient protein-protein interactions. Methods Mol Biol 833:143–152. https://doi.org/10.1007/978-1-61779-477-3_10
doi: 10.1007/978-1-61779-477-3_10
pubmed: 22183593
pmcid: 3314026
Franzosa EA, Xia Y (2011) Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108(26):10538–10543. https://doi.org/10.1073/pnas.1101440108\
doi: 10.1073/pnas.1101440108\
pubmed: 21680884
pmcid: 3127880
Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(Database issue):D583–D587. https://doi.org/10.1093/nar/gku1121
doi: 10.1093/nar/gku1121
pubmed: 25392406
Calderone A, Licata L, Cesareni G (2015) VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Res 43(Database issue):D588–D592. https://doi.org/10.1093/nar/gku830
doi: 10.1093/nar/gku830
pubmed: 25217587
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(Database issue):D452–D455. https://doi.org/10.1093/nar/gkh052
doi: 10.1093/nar/gkh052
pubmed: 14681455
pmcid: 308786
Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305. https://doi.org/10.1093/nar/30.1.303
doi: 10.1093/nar/30.1.303
pubmed: 11752321
pmcid: 99070
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861. https://doi.org/10.1093/nar/gkr930
doi: 10.1093/nar/gkr930
pubmed: 22096227
Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(D1):D369–D379. https://doi.org/10.1093/nar/gkw1102
doi: 10.1093/nar/gkw1102
pubmed: 27980099
Khanday A, Rabani ST, Khan QR, Rouf N Mohi Ud Din M (2020) Machine learning based approaches for detecting COVID-19 using clinical text data. Int J Inf Technol:1–9. https://doi.org/10.1007/s41870-020-00495-9
C Medel-Ramirez, H Medel-Lopez (2020), Data mining for the study of the epidemic (SARS-CoV-2) COVID-19: algorithm for the identification of patients (SARS-CoV-2) COVID 19 in Mexico, Available SSRN 3619549
Muhammad LJ, Islam MM, Usman SS, Ayon SI (2020) Predictive data mining models for novel coronavirus (COVID-19) infected patients' recovery. SN Comput Sci 1(4):206. https://doi.org/10.1007/s42979-020-00216-w
doi: 10.1007/s42979-020-00216-w
pubmed: 33063049
pmcid: 7306186
Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W (2020) Prediction of protein corona on nanomaterials by machine learning using novel descriptors. Nano Impact 17. https://doi.org/10.1016/j.impact.2020.100207
Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X (2020) Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A 117(19):10492–10499. https://doi.org/10.1073/pnas.1919755117
doi: 10.1073/pnas.1919755117
pubmed: 32332167
pmcid: 7229677
Papa E, Doucet JP, Sangion A, Doucet-Panaye A (2016) Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches. SAR QSAR Environ Res 27(7):521–538. https://doi.org/10.1080/1062936X.2016.1197310
doi: 10.1080/1062936X.2016.1197310
pubmed: 27329717