Bioinformatics-Based Approaches to Study Virus-Host Interactions During SARS-CoV-2 Infection.

Protein domain interaction Protein interaction networks SARS-CoV-2 virus Structural bioinformatics Virus–host protein–protein interactions

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 13 5 2022
pubmed: 14 5 2022
medline: 18 5 2022
Statut: ppublish

Résumé

As the knowledge of biomolecules is increasing from the last decades, it is helping the researchers to understand the unsolved issues regarding virology. Recent technologies in high-throughput sequencing are providing the swift generation of SARS-CoV-2 genomic data with the basic inside of viral infection. Owing to various virus-host protein interactions, high-throughput technologies are unable to provide complete details of viral pathogenesis. Identifying the virus-host protein interactions using bioinformatics approaches can assist in understanding the mechanism of SARS-CoV-2 infection and pathogenesis. In this chapter, recent integrative bioinformatics approaches are discussed to help the virologists and computational biologists in the identification of structurally similar proteins of human and SARS-CoV-2 virus, and to predict the potential of virus-host interactions. Considering experimental and time limitations for effective viral drug development, computational aided drug design (CADD) can reduce the gap between drug prediction and development. More research with respect to evolutionary solutions could be helpful to make a new pipeline for virus-host protein-protein interactions and provide more understanding to disclose the cases of host switch, and also expand the virulence of the pathogen and host range in developing viral infections.

Identifiants

pubmed: 35554909
doi: 10.1007/978-1-0716-2111-0_13
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

197-212

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502. https://doi.org/10.1016/j.tim.2016.03.003
doi: 10.1016/j.tim.2016.03.003 pubmed: 27012512 pmcid: 7125511
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R (2021) Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls Publishing LLC, Copyright © 2021, Treasure Island (FL)
Zhong NS, Zheng BJ, Li YM, Poon XZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Peiris GY (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, people’s Republic of China, in February, 2003. Lancet 362(9393):1353–1358. https://doi.org/10.1016/s0140-6736(03)14630-2
doi: 10.1016/s0140-6736(03)14630-2 pubmed: 14585636 pmcid: 7112415
Bradburne AF, Bynoe ML, Tyrrell DA (1967) Effects of a “new” human respiratory virus in volunteers. Br Med J 3(5568):767–769. https://doi.org/10.1136/bmj.3.5568.767
doi: 10.1136/bmj.3.5568.767 pubmed: 6043624 pmcid: 1843247
Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349(25):2431–2441. https://doi.org/10.1056/NEJMra032498
doi: 10.1056/NEJMra032498 pubmed: 14681510
Rehman SU, Shafique L, Ihsan A, Liu Q (2020) Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens 9(3). https://doi.org/10.3390/pathogens9030240
van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6). https://doi.org/10.1128/mBio.00473-12
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, DSC H, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for C (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032
doi: 10.1056/NEJMoa2002032 pubmed: 32109013
World Health Organization (WHO), (2020) WHO- Coronavirus disease (COVID-19) pandemic report https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102(22):7988–7993. https://doi.org/10.1073/pnas.0409465102
doi: 10.1073/pnas.0409465102 pubmed: 15897467 pmcid: 1142358
Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106(14):5871–5876. https://doi.org/10.1073/pnas.0809524106
doi: 10.1073/pnas.0809524106 pubmed: 19321428 pmcid: 2660061
Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S (2006) Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103(34):12885–12890. https://doi.org/10.1073/pnas.0603144103
doi: 10.1073/pnas.0603144103 pubmed: 16912115 pmcid: 1568942
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B, Kaufman H (2020) Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med 18(1):257. https://doi.org/10.1186/s12967-020-02430-9
doi: 10.1186/s12967-020-02430-9 pubmed: 32586380 pmcid: 7315012
Ujike M, Taguchi F (2015) Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7(4):1700–1725. https://doi.org/10.3390/v7041700
doi: 10.3390/v7041700 pubmed: 25855243 pmcid: 4411675
Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85(9):4122–4134. https://doi.org/10.1128/JVI.02232-10
doi: 10.1128/JVI.02232-10 pubmed: 21325420 pmcid: 3126222
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
doi: 10.1016/S0140-6736(20)30211-7 pubmed: 32007143 pmcid: 7135076
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State -nCo VCIT (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382 (10):929-936. https://doi.org/10.1056/NEJMoa2001191
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0
doi: 10.1038/s41422-020-0282-0 pubmed: 32020029 pmcid: 7054408
Low ZY, Farouk IA, Lal SK (2020) Drug repositioning: new approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 12(9). https://doi.org/10.3390/v12091058
Hufsky F, Lamkiewicz K, Almeida A, Aouacheria A, Arighi C, Bateman A, Baumbach J, Beerenwinkel N, Brandt C, Cacciabue M, Chuguransky S, Drechsel O, Finn RD, Fritz A, Fuchs S, Hattab G, Hauschild AC, Heider D, Hoffmann M, Holzer M, Hoops S, Kaderali L, Kalvari I, von Kleist M, Kmiecinski R, Kuhnert D, Lasso G, Libin P, List M, Lochel HF, Martin MJ, Martin R, Matschinske J, McHardy AC, Mendes P, Mistry J, Navratil V, Nawrocki EP, O'Toole AN, Ontiveros-Palacios N, Petrov AI, Rangel-Pineros G, Redaschi N, Reimering S, Reinert K, Reyes A, Richardson L, Robertson DL, Sadegh S, Singer JB, Theys K, Upton C, Welzel M, Williams L, Marz M (2021) Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief Bioinform 22(2):642–663. https://doi.org/10.1093/bib/bbaa232
doi: 10.1093/bib/bbaa232 pubmed: 33147627
Moore JH, Barnett I, Boland MR, Chen Y, Demiris G, Gonzalez-Hernandez G, Herman DS, Himes BE, Hubbard RA, Kim D, Morris JS, Mowery DL, Ritchie MD, Shen L, Urbanowicz R, Holmes JH (2020) Ideas for how informaticians can get involved with COVID-19 research. BioData Mining 13(1):3. https://doi.org/10.1186/s13040-020-00213-y
doi: 10.1186/s13040-020-00213-y pubmed: 32419848 pmcid: 7216865
Huang X, He C, Hua X, Kan A, Sun S, Wang J, Li S (2020) Bioinformatic analysis of correlation between immune infiltration and COVID-19 in cancer patients. Int J Biol Sci 16(13):2464–2476. https://doi.org/10.7150/ijbs.48639
doi: 10.7150/ijbs.48639 pubmed: 32760213 pmcid: 7378636
Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27(1):119–129. https://doi.org/10.1038/cr.2016.152
doi: 10.1038/cr.2016.152 pubmed: 28008928
Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355. https://doi.org/10.1093/nar/gkw357
doi: 10.1093/nar/gkw357 pubmed: 27131377 pmcid: 4987910
JAlmagro Armenteros JJ, Sonderby CK, Sonderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21):3387–3395. https://doi.org/10.1093/bioinformatics/btx431
doi: 10.1093/bioinformatics/btx431
Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4(2):e32. https://doi.org/10.1371/journal.ppat.0040032
doi: 10.1371/journal.ppat.0040032 pubmed: 18282095 pmcid: 2242834
Bailer SM, Haas J (2009) Connecting viral with cellular interactomes. Curr Opin Microbiol 12(4):453–459. https://doi.org/10.1016/j.mib.2009.06.004
doi: 10.1016/j.mib.2009.06.004 pubmed: 19632888 pmcid: 7108267
Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36(Pt 6):1398–1403. https://doi.org/10.1042/BST0361398
doi: 10.1042/BST0361398 pubmed: 19021563 pmcid: 7243876
Zheng LL, Li C, Ping J, Zhou Y, Li Y, Hao P (2014) The domain landscape of virus-host interactomes. Biomed Res Int 2014:867235. https://doi.org/10.1155/2014/867235
doi: 10.1155/2014/867235 pubmed: 24991570 pmcid: 4065681
Dyer MD, Murali TM, Sobral BW (2011) Supervised learning and prediction of physical interactions between human and HIV proteins. Infect Genet Evol 11(5):917–923. https://doi.org/10.1016/j.meegid.2011.02.022
doi: 10.1016/j.meegid.2011.02.022 pubmed: 21382517 pmcid: 3134873
Brito AF, Pinney JW (2017) Protein-protein interactions in virus-host systems. Front Microbiol 8:1557. https://doi.org/10.3389/fmicb.2017.01557
doi: 10.3389/fmicb.2017.01557 pubmed: 28861068 pmcid: 5562681
Navratil V, de Chassey B, Meyniel L, Delmotte S, Gautier C, Andre P, Lotteau V, Rabourdin-Combe C (2009) VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus-host interaction networks. Nucleic Acids Res 37(Database issue):D661–D668. https://doi.org/10.1093/nar/gkn794
doi: 10.1093/nar/gkn794 pubmed: 18984613
Gardner MR, Fellinger CH, Kattenhorn LM, Davis-Gardner ME, Weber JA, Alfant B, Zhou AS, Prasad NR, Kondur HR, Newton WA, Weisgrau KL, Rakasz EG, Lifson JD, Gao G, Schultz-Darken N, Farzan M (2019) AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci Transl Med 11(502). https://doi.org/10.1126/scitranslmed.aau5409
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079
doi: 10.1093/nar/gky1079 pubmed: 30476227
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539. https://doi.org/10.1093/nar/gkj109
doi: 10.1093/nar/gkj109 pubmed: 16381927
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. https://doi.org/10.1093/nar/gkq973
doi: 10.1093/nar/gkq973 pubmed: 21045058
Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35(3):235–241. https://doi.org/10.1128/br.35.3.235-241.1971
doi: 10.1128/br.35.3.235-241.1971 pubmed: 4329869 pmcid: 378387
Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14(2):208–216. https://doi.org/10.1016/j.sbi.2004.03.011
doi: 10.1016/j.sbi.2004.03.011 pubmed: 15093836
Apic G, Gough J, Teichmann SA (2001) An insight into domain combinations. Bioinformatics 17(Suppl 1):S83–S89. https://doi.org/10.1093/bioinformatics/17.suppl_1.s83
doi: 10.1093/bioinformatics/17.suppl_1.s83 pubmed: 11472996
Lee H, Deng M, Sun F, Chen T (2006) An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 7:269. https://doi.org/10.1186/1471-2105-7-269
doi: 10.1186/1471-2105-7-269 pubmed: 16725050 pmcid: 1481624
Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R (2011) DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 39(Database issue):D730–D735. https://doi.org/10.1093/nar/gkq1229
doi: 10.1093/nar/gkq1229 pubmed: 21113022
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481
doi: 10.1093/nar/gki481 pubmed: 15980490 pmcid: 1160241
Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. https://doi.org/10.1002/prot.10389
doi: 10.1002/prot.10389 pubmed: 12784371
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127
doi: 10.1093/protein/8.2.127 pubmed: 7630882
Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572. https://doi.org/10.2174/156802608786786624
doi: 10.2174/156802608786786624 pubmed: 19075767
W.L. Delano, The PyMOL molecular graphics system, schrodinger. (2002). http://www.pymol.sourceforge.net
Byrum S, Smart SK, Larson S, Tackett AJ (2012) Analysis of stable and transient protein-protein interactions. Methods Mol Biol 833:143–152. https://doi.org/10.1007/978-1-61779-477-3_10
doi: 10.1007/978-1-61779-477-3_10 pubmed: 22183593 pmcid: 3314026
Franzosa EA, Xia Y (2011) Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108(26):10538–10543. https://doi.org/10.1073/pnas.1101440108\
doi: 10.1073/pnas.1101440108\ pubmed: 21680884 pmcid: 3127880
Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(Database issue):D583–D587. https://doi.org/10.1093/nar/gku1121
doi: 10.1093/nar/gku1121 pubmed: 25392406
Calderone A, Licata L, Cesareni G (2015) VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Res 43(Database issue):D588–D592. https://doi.org/10.1093/nar/gku830
doi: 10.1093/nar/gku830 pubmed: 25217587
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(Database issue):D452–D455. https://doi.org/10.1093/nar/gkh052
doi: 10.1093/nar/gkh052 pubmed: 14681455 pmcid: 308786
Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305. https://doi.org/10.1093/nar/30.1.303
doi: 10.1093/nar/30.1.303 pubmed: 11752321 pmcid: 99070
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861. https://doi.org/10.1093/nar/gkr930
doi: 10.1093/nar/gkr930 pubmed: 22096227
Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(D1):D369–D379. https://doi.org/10.1093/nar/gkw1102
doi: 10.1093/nar/gkw1102 pubmed: 27980099
Khanday A, Rabani ST, Khan QR, Rouf N Mohi Ud Din M (2020) Machine learning based approaches for detecting COVID-19 using clinical text data. Int J Inf Technol:1–9. https://doi.org/10.1007/s41870-020-00495-9
C Medel-Ramirez, H Medel-Lopez (2020), Data mining for the study of the epidemic (SARS-CoV-2) COVID-19: algorithm for the identification of patients (SARS-CoV-2) COVID 19 in Mexico, Available SSRN 3619549
Muhammad LJ, Islam MM, Usman SS, Ayon SI (2020) Predictive data mining models for novel coronavirus (COVID-19) infected patients' recovery. SN Comput Sci 1(4):206. https://doi.org/10.1007/s42979-020-00216-w
doi: 10.1007/s42979-020-00216-w pubmed: 33063049 pmcid: 7306186
Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W (2020) Prediction of protein corona on nanomaterials by machine learning using novel descriptors. Nano Impact 17. https://doi.org/10.1016/j.impact.2020.100207
Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X (2020) Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A 117(19):10492–10499. https://doi.org/10.1073/pnas.1919755117
doi: 10.1073/pnas.1919755117 pubmed: 32332167 pmcid: 7229677
Papa E, Doucet JP, Sangion A, Doucet-Panaye A (2016) Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches. SAR QSAR Environ Res 27(7):521–538. https://doi.org/10.1080/1062936X.2016.1197310
doi: 10.1080/1062936X.2016.1197310 pubmed: 27329717

Auteurs

Muhammad Saad Khan (MS)

Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan.

Qudsia Yousafi (Q)

Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan.

Shabana Bibi (S)

Yunnan Herbal Laboratory, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, China.

Muhammad Azhar (M)

Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan.

Awais Ihsan (A)

Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan. awais.dr@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH