Analyzing dynamic species abundance distributions using generalized linear mixed models.
Poisson lognormal
environmental variance
generalized linear mixed model
population dynamics
spatial and temporal correlation
species abundance distribution
species heterogeneity
variance partitioning
Journal
Ecology
ISSN: 1939-9170
Titre abrégé: Ecology
Pays: United States
ID NLM: 0043541
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
25
03
2022
received:
13
09
2021
accepted:
28
03
2022
pubmed:
14
5
2022
medline:
9
9
2022
entrez:
13
5
2022
Statut:
ppublish
Résumé
Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long-term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept-only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species-specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.
Identifiants
pubmed: 35560064
doi: 10.1002/ecy.3742
pmc: PMC9541646
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3742Informations de copyright
© 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.
Références
Ecology. 2019 Aug;100(8):e02754
pubmed: 31062356
Ecology. 2020 Feb;101(2):e02922
pubmed: 31652337
Glob Ecol Biogeogr. 2018 Jul;27(7):760-786
pubmed: 30147447
Math Biosci. 1996 Mar;132(2):169-83
pubmed: 8714412
Science. 2017 Apr 21;356(6335):270-275
pubmed: 28428393
Am Nat. 2000 Apr;155(4):497-511
pubmed: 10753077
Glob Chang Biol. 2021 Nov;27(21):5414-5429
pubmed: 34392585
Ecology. 2022 Sep;103(9):e3742
pubmed: 35560064
PLoS One. 2019 May 1;14(5):e0216129
pubmed: 31042745
Am Nat. 2002 Jul;160(1):60-73
pubmed: 18707499
Trends Ecol Evol. 2009 Mar;24(3):127-35
pubmed: 19185386
J Anim Ecol. 2011 Jan;80(1):101-7
pubmed: 20809921
Trends Ecol Evol. 2004 Jun;19(6):305-8
pubmed: 16701275
PeerJ. 2018 May 23;6:e4794
pubmed: 29844961
Science. 2012 Jun 15;336(6087):1401-6
pubmed: 22700920
Ecol Evol. 2021 May 01;11(11):5857-5873
pubmed: 34141189
Proc Biol Sci. 2009 Aug 22;276(1669):2923-9
pubmed: 19457887
Trends Ecol Evol. 2015 Dec;30(12):766-779
pubmed: 26519235
Ecol Lett. 2011 Jan;14(1):19-28
pubmed: 21070562