Quantification of vascular networks in photoacoustic mesoscopy.

Photoacoustic imaging Segmentation Topology Vasculature

Journal

Photoacoustics
ISSN: 2213-5979
Titre abrégé: Photoacoustics
Pays: Germany
ID NLM: 101622604

Informations de publication

Date de publication:
Jun 2022
Historique:
entrez: 16 5 2022
pubmed: 17 5 2022
medline: 17 5 2022
Statut: epublish

Résumé

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of

Identifiants

pubmed: 35574188
doi: 10.1016/j.pacs.2022.100357
pii: S2213-5979(22)00026-X
pmc: PMC9095888
doi:

Types de publication

Journal Article

Langues

eng

Pagination

100357

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

© 2022 The Authors.

Déclaration de conflit d'intérêts

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Sarah Bohndiek reports a relationship with EPFL Center for Biomedical Imaging that includes: speaking and lecture fees. Sarah Bohndiek reports a relationship with PreXion Inc that includes: funding grants. Sarah Bohndiek reports a relationship with iThera Medical GmbH that includes: non-financial support. The other authors have no conflict of interest related to the present manuscript to disclose.

Références

Int J Cancer. 2016 Aug 15;139(4):729-35
pubmed: 26934471
Sci Adv. 2022 Jun 10;8(23):eabm2456
pubmed: 35687679
Photoacoustics. 2018 Nov 23;13:25-32
pubmed: 30555784
Cell. 2016 Sep 22;167(1):260-274.e22
pubmed: 27641504
Curr Opin Neurobiol. 2012 Feb;22(1):138-43
pubmed: 21925871
Microcirculation. 2019 Jul;26(5):e12520
pubmed: 30548558
Nat Methods. 2019 Dec;16(12):1226-1232
pubmed: 31570887
Opt Lett. 2014 Jul 1;39(13):3911-4
pubmed: 24978769
Br J Cancer. 2018 Apr;118(8):1098-1106
pubmed: 29576623
Cancer Biol Ther. 2017 Feb;18(2):101-105
pubmed: 28045569
J Biomed Opt. 2022 Apr;27(8):
pubmed: 35380031
Biochim Biophys Acta. 2016 Aug;1866(1):76-86
pubmed: 27343712
Dis Model Mech. 2019 Jul 16;12(7):
pubmed: 31337635
Vascul Pharmacol. 2019 Jan;112:2-7
pubmed: 30248380
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
Interface Focus. 2011 Aug 6;1(4):602-31
pubmed: 22866233
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Biotechnol. 2005 Mar;23(3):313-20
pubmed: 15765087
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3883-3886
pubmed: 28269134
Netw Neurosci. 2019 Jul 01;3(3):674-694
pubmed: 31410373
J Nucl Med. 2017 May;58(5):807-814
pubmed: 28126890
Organogenesis. 2009 Oct;5(4):227-30
pubmed: 20539742
Cancer Microenviron. 2013 Apr;6(1):1-17
pubmed: 22467426
Nat Methods. 2010 Aug;7(8):603-14
pubmed: 20676081
Opt Lett. 2013 Jul 15;38(14):2472-4
pubmed: 23939084
Clin Exp Metastasis. 2012 Oct;29(7):657-62
pubmed: 22692562
Med Image Anal. 1998 Jun;2(2):143-68
pubmed: 10646760
J Natl Cancer Inst. 2007 Oct 3;99(19):1441-54
pubmed: 17895480
Adv Sci (Weinh). 2021 May 02;8(13):2004226
pubmed: 34258153
Nat Methods. 2016 Jul 28;13(8):627-38
pubmed: 27467726
Nat Biomed Eng. 2020 Mar;4(3):286-297
pubmed: 32165736
J Biomed Opt. 2010 Mar-Apr;15(2):021314
pubmed: 20459236
Nat Biomed Eng. 2019 May;3(5):354-370
pubmed: 30988470
Theranostics. 2018 Mar 7;8(8):2117-2133
pubmed: 29721067
Comput Methods Programs Biomed. 2018 May;158:71-91
pubmed: 29544791
Comput Med Imaging Graph. 2021 Apr;89:101840
pubmed: 33548822
Phys Med Biol. 2016 Nov 21;61(22):7994-8009
pubmed: 27779138
Neoplasia. 2015 Feb;17(2):208-14
pubmed: 25748240
Biomed Opt Express. 2019 Oct 29;10(11):5921-5939
pubmed: 31799055
J Theor Biol. 1968 Mar;18(3):280-99
pubmed: 5659071
Phys Med Biol. 2008 Aug 7;53(15):4203-12
pubmed: 18635896
Biomed Opt Express. 2018 Jun 04;9(7):2887-2904
pubmed: 29984073
Sci Rep. 2015 Nov 16;5:16534
pubmed: 26567707

Auteurs

Emma L Brown (EL)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Thierry L Lefebvre (TL)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Paul W Sweeney (PW)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Bernadette J Stolz (BJ)

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.

Janek Gröhl (J)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Lina Hacker (L)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Ziqiang Huang (Z)

Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Dominique-Laurent Couturier (DL)

Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Heather A Harrington (HA)

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.

Helen M Byrne (HM)

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.

Sarah E Bohndiek (SE)

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.

Classifications MeSH