Explicitly accounting for needle sugar pool size crucial for predicting intra-seasonal dynamics of needle carbohydrates δ

Scots pine (Pinus sylvestris) boreal forest carbon isotope dynamic modeling needle sugar oxygen isotope photosynthesis

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
12 2022
Historique:
received: 02 12 2021
accepted: 07 05 2022
pubmed: 17 5 2022
medline: 22 11 2022
entrez: 16 5 2022
Statut: ppublish

Résumé

We explore needle sugar isotopic compositions (δ

Identifiants

pubmed: 35575976
doi: 10.1111/nph.18227
pmc: PMC9795997
doi:

Substances chimiques

Sugars 0
Carbon Isotopes 0
pinitol 484-68-4
Carbohydrates 0
Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2044-2060

Informations de copyright

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Références

Rapid Commun Mass Spectrom. 2016 Jan 15;30(1):221-9
pubmed: 26661989
Plant Cell Environ. 2020 Sep;43(9):2124-2142
pubmed: 32596814
Plant Cell Environ. 2014 Jul;37(7):1494-8
pubmed: 24716900
Plant J. 2014 Jul;79(1):82-91
pubmed: 24836712
Funct Plant Biol. 2005 May;32(4):293-303
pubmed: 32689132
New Phytol. 2013 Oct;200(1):144-157
pubmed: 23763637
Plant Cell Environ. 2007 May;30(5):600-16
pubmed: 17407538
Tree Physiol. 2020 Oct 7;40(10):1366-1380
pubmed: 32589748
Plant Physiol. 2000 Jun;123(2):671-80
pubmed: 10859197
New Phytol. 2013 Feb;197(3):838-849
pubmed: 23252478
Tree Physiol. 2014 Aug;34(8):796-818
pubmed: 24907466
Rapid Commun Mass Spectrom. 2020 Oct 15;34(19):e8854
pubmed: 32511807
Plant Cell Environ. 2006 Aug;29(8):1571-84
pubmed: 16898018
Tree Physiol. 2014 Aug;34(8):792-5
pubmed: 25117269
Glob Chang Biol. 2016 Dec;22(12):4096-4113
pubmed: 27614117
Plant Cell Environ. 2013 Jul;36(7):1338-51
pubmed: 23305086
Plant Cell Environ. 2014 Jul;37(7):1516-35
pubmed: 24372560
PLoS One. 2011;6(11):e28040
pubmed: 22132203
New Phytol. 2021 Jun;230(5):1911-1924
pubmed: 33638181
Plant Cell Environ. 2011 Sep;34(9):1521-35
pubmed: 21554329
New Phytol. 2019 Jun;222(4):1803-1815
pubmed: 30740705
Oecologia. 1999 Dec;121(4):467-477
pubmed: 28308356
Plant Cell Environ. 2009 Aug;32(8):1071-90
pubmed: 19422614
Plant Cell Environ. 2017 Aug;40(8):1658-1670
pubmed: 28436078
Glob Chang Biol. 2022 May;28(9):2910-2929
pubmed: 35112446
Plant Cell Environ. 2018 Dec;41(12):2758-2772
pubmed: 29995977
New Phytol. 2013 Jan;197(2):544-554
pubmed: 23215904
Glob Chang Biol. 2020 Feb;26(2):496-508
pubmed: 31597216
Plant Cell Environ. 2015 Nov;38(11):2340-52
pubmed: 25916312
New Phytol. 2021 Mar;229(6):3156-3171
pubmed: 33251585
Photosynth Res. 2019 Jul;141(1):53-63
pubmed: 31123952
Rapid Commun Mass Spectrom. 2012 Jan 30;26(2):109-14
pubmed: 22173798
Tree Physiol. 2011 Oct;31(10):1088-102
pubmed: 21957095
Plant Cell Environ. 2015 Dec;38(12):2551-65
pubmed: 26037826
Plant Cell Environ. 2016 May;39(5):1087-102
pubmed: 26715126
Oecologia. 2008 Mar;155(3):441-54
pubmed: 18224341
Plant Cell Environ. 2012 Jul;35(7):1221-31
pubmed: 22292425
Rapid Commun Mass Spectrom. 2009 Aug 30;23(16):2476-88
pubmed: 19603463
Nat Plants. 2020 Mar;6(3):245-258
pubmed: 32170287
New Phytol. 2021 Mar;229(6):3141-3155
pubmed: 33222199
New Phytol. 2017 Jan;213(1):140-153
pubmed: 27513732
Radiat Environ Biophys. 1974 Mar 29;11(1):41-52
pubmed: 4832051
Plant Cell Environ. 2007 May;30(5):539-50
pubmed: 17407532
Planta. 1985 May;164(2):215-20
pubmed: 24249563
New Phytol. 2013 Dec;200(4):950-65
pubmed: 23902460
Rapid Commun Mass Spectrom. 2006;20(8):1317-21
pubmed: 16555369
Plant Physiol. 1986 Oct;82(2):423-7
pubmed: 16665045
New Phytol. 2016 Feb;209(3):955-64
pubmed: 26610186
Biochemistry. 1985 Mar 26;24(7):1603-7
pubmed: 3924094
Rapid Commun Mass Spectrom. 2012 Sep 30;26(18):2173-85
pubmed: 22886814
Rapid Commun Mass Spectrom. 2001;15(14):1136-40
pubmed: 11445894
Plant Physiol. 1991 Jun;96(2):588-96
pubmed: 16668226
Nature. 2008 Jul 24;454(7203):511-4
pubmed: 18548005
Funct Plant Biol. 2003 Nov;30(10):1059-1070
pubmed: 32689088

Auteurs

Kersti Leppä (K)

Natural Resources Institute Finland, 00790, Helsinki, Finland.

Yu Tang (Y)

Natural Resources Institute Finland, 00790, Helsinki, Finland.
Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, 00014, Helsinki, Finland.

Jérôme Ogée (J)

UMR ISPA, INRA, 33140, Villenave d'Ornon, France.

Samuli Launiainen (S)

Natural Resources Institute Finland, 00790, Helsinki, Finland.

Ansgar Kahmen (A)

Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland.

Pasi Kolari (P)

Faculty of Science, Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, 00014, Helsinki, Finland.

Elina Sahlstedt (E)

Natural Resources Institute Finland, 00790, Helsinki, Finland.

Matthias Saurer (M)

Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903, Birmensdorf, Switzerland.

Pauliina Schiestl-Aalto (P)

Faculty of Science, Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, 00014, Helsinki, Finland.

Katja T Rinne-Garmston (KT)

Natural Resources Institute Finland, 00790, Helsinki, Finland.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH