Functional susceptibility of tropical forests to climate change.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
07 2022
Historique:
received: 02 09 2021
accepted: 24 03 2022
pubmed: 17 5 2022
medline: 12 7 2022
entrez: 16 5 2022
Statut: ppublish

Résumé

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.

Identifiants

pubmed: 35577983
doi: 10.1038/s41559-022-01747-6
pii: 10.1038/s41559-022-01747-6
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

878-889

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
pubmed: 27362236 doi: 10.1038/nature18326
Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).
doi: 10.1080/10549811.2017.1310049
ter Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 29549 (2016).
pubmed: 27406027 pmcid: 4942782 doi: 10.1038/srep29549
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
pubmed: 32132693 doi: 10.1038/s41586-020-2035-0
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
pubmed: 21764754 doi: 10.1126/science.1201609
Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).
pubmed: 33355136 doi: 10.1126/sciadv.abd4548
Malhi, Y. et al. The regional variation of aboveground live biomass in old‐growth Amazonian forests. Glob. Change Biol. 12, 1107–1138 (2006).
doi: 10.1111/j.1365-2486.2006.01120.x
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
pubmed: 19265020 doi: 10.1126/science.1164033
Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).
pubmed: 18048654 doi: 10.1126/science.1146961
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
pubmed: 34262208 doi: 10.1038/s41586-021-03629-6
Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).
pubmed: 28695682 doi: 10.1111/brv.12351
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
pubmed: 28360268 doi: 10.1126/science.aai9214
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
pubmed: 19218454 pmcid: 2791614 doi: 10.1073/pnas.0804619106
Seager, R. et al. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).
doi: 10.1175/JAMC-D-14-0321.1
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
pubmed: 33051618 doi: 10.1038/s41477-020-00780-2
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
pubmed: 31453338 pmcid: 6693914 doi: 10.1126/sciadv.aax1396
Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large‐scale hydrological refugia from drought?. New Phytol. https://doi.org/10.1111/nph.17914 (2022).
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
pubmed: 32299945 doi: 10.1126/science.aat7631
Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 12, 023001 (2017).
doi: 10.1088/1748-9326/aa5968
Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
doi: 10.1111/gcb.14413
Aguirre‐Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett. 22, 855–865 (2019).
pubmed: 30828955 doi: 10.1111/ele.13243
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48.5, 1079–1087 (2011).
doi: 10.1111/j.1365-2664.2011.02048.x
Aguirre‐Gutiérrez, J. et al. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 26, 1126–1137 (2017).
doi: 10.1111/geb.12622
Arruda Almeida, B. et al. Comparing species richness, functional diversity and functional composition of waterbird communities along environmental gradients in the neotropics. PLoS ONE 13, e0200959 (2018).
pubmed: 30028866 pmcid: 6054399 doi: 10.1371/journal.pone.0200959
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).
pubmed: 9990046 pmcid: 15485 doi: 10.1073/pnas.96.4.1463
Correia, D. L. P., Raulier, F., Bouchard, M. & Filotas, É. Response diversity, functional redundancy, and post‐logging productivity in northern temperate and boreal forests. Ecol. Appl. 28, 1282–1291 (2018).
pubmed: 29672967 doi: 10.1002/eap.1727
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).
doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).
pubmed: 23346947 doi: 10.1111/ele.12073
Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).
pubmed: 17714276 doi: 10.1111/j.1365-2656.2007.01271.x
Jucker, T. et al. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).
pubmed: 25308256 doi: 10.1111/ele.12382
Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).
doi: 10.1046/j.1365-2745.2001.00528.x
Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).
pubmed: 32620761 pmcid: 7335099 doi: 10.1038/s41467-020-16973-4
Fauset, S. et al. Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).
pubmed: 22812661 doi: 10.1111/j.1461-0248.2012.01834.x
Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
pubmed: 20380219 doi: 10.1890/08-2244.1
Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).
doi: 10.1111/gcb.15982
Quesada, C. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
doi: 10.5194/bg-9-2203-2012
Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
pubmed: 34001597 pmcid: 8166131 doi: 10.1073/pnas.2003169118
Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P.R. et al.) (IPCC, 2019).
Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).
pubmed: 21141186 doi: 10.1890/09-1849.1
Petchey, O. L. On the statistical significance of functional diversity effects. Funct. Ecol. 18, 297–303 (2004).
doi: 10.1111/j.0269-8463.2004.00852.x
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
doi: 10.1016/S0169-5347(02)00045-9
ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
pubmed: 17006512 doi: 10.1038/nature05134
Raes, N. et al. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180–192 (2009).
doi: 10.1111/j.1600-0587.2009.05800.x
Shenkin, A. et al. The influence of ecosystem and phylogeny on tropical tree crown size and shape. Front. For. Glob. Change 3, 501757 (2020).
doi: 10.3389/ffgc.2020.501757
Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).
pubmed: 32071212 pmcid: 7060689 doi: 10.1073/pnas.1921724117
Grossman, J. J., Cavender‐Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early‐successional tree diversity experiment. Ecology 98, 2601–2614 (2017).
pubmed: 28727905 doi: 10.1002/ecy.1958
Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).
pubmed: 33139920 doi: 10.1038/s41559-020-01329-4
Hutchison, C., Gravel, D., Guichard, F. & Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 8, 15443 (2018).
pubmed: 30337582 pmcid: 6193960 doi: 10.1038/s41598-018-33670-x
González-M, R. et al. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol. Lett. 24, 451–463 (2021).
pubmed: 33316132 doi: 10.1111/ele.13659
Hoegh-Guldberg, O. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).
de la Riva, E. G. et al. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 10, 281–293 (2017).
Reich, P. B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
doi: 10.1111/1365-2745.12211
Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).
pubmed: 33570772 doi: 10.1111/nph.17266
Anderegg, W. R. L. & Meinzer, F. C. in Functional and Ecological Xylem Anatomy (ed Hacke, U.) Ch. 9 (Springer, 2015).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
pubmed: 19243406 doi: 10.1111/j.1461-0248.2009.01285.x
Pratt, R., Jacobsen, A., Ewers, F. & Davis, S. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787–798 (2007).
pubmed: 17504462 doi: 10.1111/j.1469-8137.2007.02061.x
Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
pubmed: 21622380 doi: 10.3732/ajb.0900178
Bucci, S. J. et al. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought‐induced embolism by leaves and roots. Plant Cell Environ. 36, 2163–2174 (2013).
pubmed: 23639077 doi: 10.1111/pce.12126
Meinzer, F. C. et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156, 31–41 (2008).
pubmed: 18253753 doi: 10.1007/s00442-008-0974-5
Scholz F. G., Phillips N. G., Bucci S. J., Meinzer F. C. & Goldstein G. in Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer F. C. C. et al.) 341–361 (Springer, 2011).
Mitchell, P. J. et al. Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158, 385–397 (2008).
pubmed: 18839215 doi: 10.1007/s00442-008-1152-5
Villagra, Mariana et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 33, 1308–1318 (2013).
pubmed: 24284866 doi: 10.1093/treephys/tpt098
Ishida, Atsushi et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156, 193–202 (2008).
pubmed: 18297313 doi: 10.1007/s00442-008-0965-6
Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).
doi: 10.1016/j.biocon.2020.108889
Martin, R. E. et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci. 10, 1810 (2020).
pubmed: 32076427 pmcid: 7006543 doi: 10.3389/fpls.2019.01810
Enquist, B. J. et al. Assessing trait‐based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).
doi: 10.1111/geb.12645
Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol. 221, 1853–1865 (2019).
pubmed: 30238458 doi: 10.1111/nph.15444
Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00018 (2020).
Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).
pubmed: 30388271 doi: 10.1093/treephys/tpy117
Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112122 (2021).
doi: 10.1016/j.rse.2020.112122
Pavoine, S. adiv: an R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).
doi: 10.1111/2041-210X.13430
Pavoine, S. & Ricotta, C. A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol. Ind. 101, 552–561 (2019).
doi: 10.1016/j.ecolind.2019.01.052
Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).
doi: 10.1111/2041-210X.12604
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
pubmed: 26700811 doi: 10.1038/nature16489
van der Plas, F., Van Klink, R., Manning, P., Olff, H. & Fischer, M. Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol. 8, 1072–1080 (2017).
doi: 10.1111/2041-210X.12728
Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).
doi: 10.1016/0040-5809(82)90004-1
Simpson, E. H. Measurement of diversity. Nature https://doi.org/10.1038/163688a0 (1949).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
pubmed: 29313841 pmcid: 5759372 doi: 10.1038/sdata.2017.191
Fan, Y. Groundwater in the earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).
doi: 10.1002/2015WR017037
Moulatlet, G. M. et al. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: problems and prospects. Ecol. Evol. 7, 8463–8477 (2017).
pubmed: 29075463 pmcid: 5648677 doi: 10.1002/ece3.3242
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
doi: 10.1111/j.1600-0587.2012.07348.x
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
doi: 10.1007/s11222-016-9696-4
Makowski, D., Ben-Shachar, M. S. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).
doi: 10.21105/joss.01541
Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2014).

Auteurs

Jesús Aguirre-Gutiérrez (J)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK. jesus.aguirregutierrez@ouce.ox.ac.uk.
Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, the Netherlands. jesus.aguirregutierrez@ouce.ox.ac.uk.

Erika Berenguer (E)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
Lancaster Environment Centre, Lancaster University, Lancaster, UK.

Imma Oliveras Menor (I)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.

David Bauman (D)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
Smithsonian Environmental Research Center, Edgewater, MD, USA.

Jose Javier Corral-Rivas (JJ)

Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico.

Maria Guadalupe Nava-Miranda (MG)

Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico.

Sabine Both (S)

Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.

Josué Edzang Ndong (JE)

Agence Nationale des Parcs Nationaux, Libreville, Gabon.

Fidèle Evouna Ondo (FE)

Agence Nationale des Parcs Nationaux, Libreville, Gabon.

Natacha N'ssi Bengone (NN)

Ministère des Eaux, des Forêts, de la Mer et de L'Environnement, Libreville, Gabon.

Vianet Mihinhou (V)

Ministère des Eaux, des Forêts, de la Mer et de L'Environnement, Libreville, Gabon.

James W Dalling (JW)

Smithsonian Tropical Research Institute, Panama City, Republic of Panama.
Department of Plant Biology, University of Illinois, Urbana, IL, USA.

Katherine Heineman (K)

Department of Plant Biology, University of Illinois, Urbana, IL, USA.

Axa Figueiredo (A)

National Institute of Amazonian Research-INPA, Manaus, Brazil.

Roy González-M (R)

Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia.

Natalia Norden (N)

Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia.

Ana Belén Hurtado-M (AB)

Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia.

Diego González (D)

Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia.

Beatriz Salgado-Negret (B)

Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.

Simone Matias Reis (SM)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil.

Marina Maria Moraes de Seixas (MM)

Embrapa Amazônia Oriental, Belém, Brazil.

William Farfan-Rios (W)

Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA.
Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, USA.
Herbario Vargas (CUZ), Escuela Profesional de Biología, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru.

Alexander Shenkin (A)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.

Terhi Riutta (T)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
College of Life Sciences, University of Exeter, Exeter, UK.

Cécile A J Girardin (CAJ)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.

Sam Moore (S)

Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.

Kate Abernethy (K)

Institut de Recherche en Écologie Tropicale, Libreville, Gabon.
Biological and Environmental Sciences, University of Stirling, Stirling, UK.

Gregory P Asner (GP)

Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA.

Lisa Patrick Bentley (LP)

Department of Biology, Sonoma State University, Rohnert Park, CA, USA.

David F R P Burslem (DFRP)

School of Biological Sciences, University of Aberdeen, Aberdeen, UK.

Lucas A Cernusak (LA)

College of Science and Engineering, James Cook University, Cairns, Queensland, Australia.

Brian J Enquist (BJ)

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.

Robert M Ewers (RM)

Department of Life Sciences, Imperial College London, Ascot, UK.

Joice Ferreira (J)

MCT/Museu Paraense Emílio Goeldi, Belém, Brazil.

Kathryn J Jeffery (KJ)

Department of Life Sciences, Imperial College London, Ascot, UK.

Carlos A Joly (CA)

Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, Brazil.

Ben Hur Marimon-Junior (BH)

Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil.

Roberta E Martin (RE)

Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA.

Paulo S Morandi (PS)

Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil.

Oliver L Phillips (OL)

Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK.

Amy C Bennett (AC)

Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK.

Simon L Lewis (SL)

Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK.
Department of Geography, University College London, London, UK.

Carlos A Quesada (CA)

Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.

Beatriz Schwantes Marimon (BS)

Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil.

W Daniel Kissling (WD)

Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.

Miles Silman (M)

Department of Biology, Wake Forest University, Winston-Salem, NC, USA.

Yit Arn Teh (YA)

School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK.

Lee J T White (LJT)

Ministère des Eaux, des Forêts, de la Mer et de L'Environnement, Libreville, Gabon.
Institut de Recherche en Écologie Tropicale, Libreville, Gabon.
Biological and Environmental Sciences, University of Stirling, Stirling, UK.

Norma Salinas (N)

Instituto de la Naturaleza, Tierra y Energía, Pontificia Universidad Católica del Perú, Lima, Peru.

David A Coomes (DA)

Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK.

Jos Barlow (J)

Lancaster Environment Centre, Lancaster University, Lancaster, UK.

Stephen Adu-Bredu (S)

CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana.

Yadvinder Malhi (Y)

Department of Plant Biology, University of Illinois, Urbana, IL, USA.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH