Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain.
Mollusks
Nervous system
Transcriptome
Transposable elements
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
18 05 2022
18 05 2022
Historique:
received:
06
02
2021
accepted:
21
04
2022
entrez:
17
5
2022
pubmed:
18
5
2022
medline:
20
5
2022
Statut:
epublish
Résumé
Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus.
Sections du résumé
BACKGROUND
Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus.
RESULTS
Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes.
CONCLUSIONS
The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus.
Identifiants
pubmed: 35581640
doi: 10.1186/s12915-022-01303-5
pii: 10.1186/s12915-022-01303-5
pmc: PMC9115989
doi:
Substances chimiques
DNA Transposable Elements
0
RNA, Long Noncoding
0
Retroelements
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
116Informations de copyright
© 2022. The Author(s).
Références
Curr Biol. 2008 Mar 11;18(5):337-42
pubmed: 18328706
Philos Trans R Soc Lond B Biol Sci. 1970 Jul 30;258(827):379-94
pubmed: 22408833
Mol Cell Neurosci. 2020 Jun;105:103494
pubmed: 32387751
BMC Bioinformatics. 2009 Aug 04;10:239
pubmed: 19653905
Bioinformatics. 2006 Jul 1;22(13):1658-9
pubmed: 16731699
Cell. 2018 Jul 12;174(2):391-405.e19
pubmed: 29937225
PLoS Genet. 2013 Apr;9(4):e1003470
pubmed: 23637635
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
J Cell Biol. 1964 Apr;21:87-103
pubmed: 14154498
Cell. 2017 Apr 6;169(2):191-202.e11
pubmed: 28388405
Front Cell Neurosci. 2015 May 13;9:174
pubmed: 26029048
Nature. 2015 Aug 13;524(7564):220-4
pubmed: 26268193
Genes Dev. 2011 Sep 15;25(18):1915-27
pubmed: 21890647
PLoS Comput Biol. 2013;9(8):e1003118
pubmed: 23950696
Front Physiol. 2017 Dec 15;8:1001
pubmed: 29326594
Front Physiol. 2018 Jul 20;9:952
pubmed: 30079030
Genome Biol. 2012 Nov 26;13(11):R107
pubmed: 23181609
Genome Biol. 2009;10(3):R25
pubmed: 19261174
Trends Neurosci. 2010 Aug;33(8):345-54
pubmed: 20471112
Sci Data. 2019 Apr 1;6(1):13
pubmed: 30931949
Gigascience. 2018 Nov 1;7(11):
pubmed: 30256935
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Nature. 2012 Oct 4;490(7418):49-54
pubmed: 22992520
Nat Genet. 2017 Oct;49(10):1502-1510
pubmed: 28846101
Brain Behav Evol. 2013;82(1):19-30
pubmed: 23979453
Cell. 2018 Aug 23;174(5):1082-1094.e12
pubmed: 30057117
Cell. 2015 Apr 9;161(2):228-39
pubmed: 25860606
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3030-3035
pubmed: 30635418
Genome Res. 2017 Nov;27(11):1916-1929
pubmed: 28855259
J Theor Biol. 1963 Nov;5(3):470-88
pubmed: 5896175
Cytogenet Genome Res. 2005;110(1-4):462-7
pubmed: 16093699
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
ALTEX. 2014;31(4):494-9
pubmed: 24919978
Elife. 2018 Jan 08;7:
pubmed: 29309035
Semin Cell Dev Biol. 2017 Sep;69:151-157
pubmed: 28627384
Cell. 2011 Dec 23;147(7):1537-50
pubmed: 22196729
Elife. 2018 Jan 08;7:
pubmed: 29309036
Invert Neurosci. 2014 Mar;14(1):13-36
pubmed: 24385049
Genome Res. 2012 Mar;22(3):577-91
pubmed: 22110045
Nat Ecol Evol. 2021 Jul;5(7):927-938
pubmed: 33972735
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
Cell Stem Cell. 2017 Sep 7;21(3):319-331.e8
pubmed: 28803918
Nucleic Acids Res. 2000 Jan 1;28(1):304-5
pubmed: 10592255
Curr Biol. 2017 Sep 25;27(18):2833-2842.e6
pubmed: 28889973
Nature. 2011 Oct 30;479(7374):534-7
pubmed: 22037309
Nucleic Acids Res. 2012 Jan;40(Database issue):D761-9
pubmed: 22102589
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W385-8
pubmed: 16845033
Biotechniques. 2003 Feb;34(2):374-8
pubmed: 12613259
Nature. 2019 Feb;566(7742):73-78
pubmed: 30728521
Bioinformatics. 2007 May 1;23(9):1061-7
pubmed: 17332020
Cell. 2012 Apr 27;149(3):693-707
pubmed: 22541438
J Comp Neurol. 2015 Jun 15;523(9):1297-317
pubmed: 25644267
Front Physiol. 2019 Jan 14;9:1905
pubmed: 30692932
Nat Struct Mol Biol. 2020 Feb;27(2):179-191
pubmed: 32042152
Science. 2004 Mar 12;303(5664):1626-32
pubmed: 15016989
Brain Res. 2010 Jun 18;1338:20-35
pubmed: 20380817
Bioinformatics. 2005 May 1;21(9):1859-75
pubmed: 15728110
BMC Evol Biol. 2010 May 17;10:144
pubmed: 20470440
RNA. 2011 Jun;17(6):1090-9
pubmed: 21515829
Nature. 1999 Jul 1;400(6739):69-73
pubmed: 10403250
Cell Res. 2021 Jun;31(6):613-630
pubmed: 33514913
Nucleic Acids Res. 1993 Mar 11;21(5):1318
pubmed: 8385316
Mol Genet Metab. 2002 Sep-Oct;77(1-2):179-88
pubmed: 12359145
Bioinformatics. 2003 Aug 12;19(12):1572-4
pubmed: 12912839
Nature. 2013 Jan 24;493(7433):526-31
pubmed: 23254933
Lab Anim. 2015 Jul;49(2 Suppl):1-90
pubmed: 26354955
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Front Biosci (Schol Ed). 2010 Jan 01;2(2):764-71
pubmed: 20036982
Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32
pubmed: 23125362
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
pubmed: 25348405
Biol Bull. 1991 Apr;180(2):200-208
pubmed: 29304688
Eur J Neurosci. 2006 Feb;23(4):869-76
pubmed: 16519652
Proc Biol Sci. 2019 Feb 27;286(1897):20182929
pubmed: 30963849
Bioinformatics. 2017 Sep 15;33(18):2938-2940
pubmed: 28645171
Nature. 2005 Jun 16;435(7044):903-10
pubmed: 15959507
Nat Methods. 2015 Feb;12(2):115-21
pubmed: 25633503
Bioinformatics. 2013 Feb 01;29(3):389-90
pubmed: 23233656
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Bioinformatics. 2015 Jul 1;31(13):2199-201
pubmed: 25701574
Mol Biol Evol. 1998 Sep;15(9):1123-34
pubmed: 9729877
Nucleic Acids Res. 2013 Jan;41(Database issue):D348-52
pubmed: 23197659
Nature. 2003 Aug 28;424(6952):1061-5
pubmed: 12944969
Nat Methods. 2011 Jun;8(6):441
pubmed: 21774112
Science. 2013 Apr 5;340(6128):91-5
pubmed: 23559253
Science. 2020 Jan 31;367(6477):580-586
pubmed: 31949099
Nucleic Acids Res. 1998 Aug 1;26(15):3528-35
pubmed: 9671814
Gigascience. 2020 Jan 1;9(1):
pubmed: 31942620
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Cytogenet Genome Res. 2005;110(1-4):475-90
pubmed: 16093701
Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12
pubmed: 22096229
Trends Neurosci. 2009 Sep;32(9):476-84
pubmed: 19716185
Behav Neural Biol. 1990 Mar;53(2):217-30
pubmed: 2331233