The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis.

heart rate heart rate variability meta-regression noninvasive brain stimulation transcranial direct current stimulation transcranial magnetic stimulation

Journal

Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111

Informations de publication

Date de publication:
09 2022
Historique:
revised: 25 04 2022
received: 13 01 2022
accepted: 30 04 2022
pubmed: 19 5 2022
medline: 22 7 2022
entrez: 18 5 2022
Statut: ppublish

Résumé

Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.

Identifiants

pubmed: 35582757
doi: 10.1002/jnr.25062
doi:

Types de publication

Journal Article Meta-Analysis Review Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1664-1694

Informations de copyright

© 2022 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC.

Références

Agboada, D., Mosayebi Samani, M., Jamil, A., Kuo, M.-F., & Nitsche, M. A. (2019). Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Scientific Reports, 9(1), 18185. https://doi.org/10.1038/s41598-019-54621-0
Angius, L., Marcora, S. M., Hopker, J. G., & Mauger, A. R. (2018). The effect of anodal transcranial direct current stimulation over left and right temporal cortex on the cardiovascular response: A comparative study. Frontiers in Physiology, 9, e01822. https://doi.org/10.3389/fphys.2018.01822
Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363-375. https://doi.org/10.1016/j.neuroscience.2016.10.028
Angius, L., Santarnecchi, E., Pascual-Leone, A., & Marcora, S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience, 419, 34-45. https://doi.org/10.1016/j.neuroscience.2019.08.052
Ansakorpi, H., Korpelainen, J. T., Tanskanen, P., Huikuri, H. V., Koivula, A., Tolonen, U., Pyhtinen, J., Myllylä, V. V., & Isojärvi, J. I. (2004). Cardiovascular regulation and hippocampal sclerosis. Epilepsia, 45(8), 933-939. https://doi.org/10.1111/j.0013-9580.2004.65003.x
Baeken, C., van Beek, V., Vanderhasselt, M. A., Duprat, R., & Klooster, D. (2021). Cortical thickness in the right anterior cingulate cortex relates to clinical response to left prefrontal accelerated intermittent theta burst stimulation: An exploratory study. Neuromodulation, 24(5), 938-949. https://doi.org/10.1111/ner.13380
Baldari, C., Buzzachera, C. F., Vitor-Costa, M., Gabardo, J. M., Bernardes, A. G., Altimari, L. R., & Guidetti, L. (2018). Effects of transcranial direct current stimulation on psychophysiological responses to maximal incremental exercise test in recreational endurance runners. Frontiers in Psychology, 9, 1867. https://doi.org/10.3389/fpsyg.2018.01867
Baldrai, C., Buzzachera, C. F., & Guidetti, L. (2020). Effects of tDCS on HR of female recreational runners [Unpublished raw data]. University of Rome “Foro Italico”.
Bär, K. J., Herbsleb, M., Schumann, A., de la Cruz, F., Gabriel, H. W., & Wagner, G. (2016). Hippocampal-brainstem connectivity associated with vagal modulation after an intense exercise intervention in healthy men. Frontiers in Neuroscience, 10, 145. https://doi.org/10.3389/fnins.2016.00145
Bartoń, K. (2013). MuMIn: Multi-model inference. R package Version 1.9.0. http://CRAN.R-project.org/package=MuMIn
Barwood, M. J., Butterworth, J., Goodall, S., House, J. R., Laws, R., Nowicky, A., & Corbett, J. (2016). The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimulation, 9(6), 842-849. https://doi.org/10.1016/j.brs.2016.07.006
Beda, A., Simpson, D. M., Carvalho, N. C., & Carvalho, A. R. (2014). Low-frequency heart rate variability is related to the breath-to-breath variability in the respiratory pattern. Psychophysiology, 51(2), 197-205. https://doi.org/10.1111/psyp.12163
Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., & Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychological Medicine, 50(15), 2465-2486. https://doi.org/10.1017/S0033291720003670
Beissner, F., Meissner, K., Bär, K. J., & Napadow, V. (2013). The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. Journal of Neuroscience, 33(25), 10503-10511. https://doi.org/10.1523/JNEUROSCI.1103-13.2013
Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988-1001. https://doi.org/10.1016/S0025-6196(12)62272-1
Berger, C., Domes, G., Balschat, J., Thome, J., & Höppner, J. (2017). Effects of prefrontal rTMS on autonomic reactions to affective pictures. Journal of Neural Transmission, 124(Suppl. 1), 139-152. https://doi.org/10.1007/s00702-015-1491-4
Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., & Siebner, H. R. (2016). Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage, 140, 4-19. https://doi.org/10.1016/j.neuroimage.2016.02.012
Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623-648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
Bestmann, S. (2008). The physiological basis of transcranial magnetic stimulation. Trends in Cognitive Sciences, 12(3), 81-83. https://doi.org/10.1016/j.tics.2007.12.002
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 19(7), 1950-1962. https://doi.org/10.1111/j.1460-9568.2004.03277.x
Beynel, L., Powers, J. P., & Appelbaum, L. G. (2020). Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review. Neuroimage, 211, 116596. https://doi.org/10.1016/j.neuroimage.2020.116596
Boes, A. D., Uitermarkt, B. D., Albazron, F. M., Lan, M. J., Liston, C., Pascual-Leone, A., Dubin, M. J., & Fox, M. D. (2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain stimulation, 11(3), 575-581. https://doi.org/10.1016/j.brs.2018.01.029
Borenstein, M. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386
Brosschot, J. F., Verkuil, B., & Thayer, J. F. (2017). Exposed to events that never happen: Generalized unsafety, the default stress response, and prolonged autonomic activity. Neuroscience and Biobehavioral Reviews, 74(Pt B), 287-296. https://doi.org/10.1016/j.neubiorev.2016.07.019
Brown, P., Brunnhuber, K., Chalkidou, K., Chalmers, I., Clarke, M., Fenton, M., Forbes, C., Glanville, J., Hicks, N. J., Moody, J., Twaddle, S., Timimi, H., & Young, P. (2006). How to formulate research recommendations. BMJ, 333(7572), 804-806. https://doi.org/10.1136/bmj.38987.492014.94
Brunoni, A. R., Kemp, A. H., Dantas, E. M., Goulart, A. C., Nunes, M. A., Boggio, P. S., Mill, J. G., Lotufo, P. A., Fregni, F., & Benseñor, I. M. (2013). Heart rate variability is a trait marker of major depressive disorder: Evidence from the sertraline vs electric current therapy to treat depression clinical study. International Journal of Neuropsychopharmacology, 16(9), 1937-1949. https://doi.org/10.1017/S1461145713000497
Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., Edwards, D. J., Valero-Cabre, A., Rotenberg, A., Pascual-Leone, A., Ferrucci, R., Priori, A., Boggio, P., & Fregni, F. (2011). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175-195. https://doi.org/10.1016/j.brs.2011.03.002
Brunoni, A. R., & Vanderhasselt, M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86, 1-9. https://doi.org/10.1016/j.bandc.2014.01.008
Brunoni, A. R., Vanderhasselt, M.-A., Boggio, P. S., Fregni, F., Dantas, E. M., Mill, J. G., Lotufo, P. A., & Benseñor, I. M. (2013). Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol. Psychoneuroendocrinology, 38(1), 58-66. https://doi.org/10.1016/j.psyneuen.2012.04.020
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.201
Bulubas, L., Padberg, F., Bueno, P. V., Duran, F., Busatto, G., Amaro, E., Jr., Benseñor, I. M., Lotufo, P. A., Goerigk, S., Gattaz, W., Keeser, D., & Brunoni, A. R. (2019). Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: Evidence from the ELECT-TDCS trial. Brain Stimulation, 12(5), 1197-1204. https://doi.org/10.1016/j.brs.2019.05.006
Burnham, K. P., & Anderson, D. R. (2004). Model selection and inference. A practical information-theoretical approach (2nd ed.). Springer-Verlag.
Cárdenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schönfeldt-Lecuona, C. (2010). Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topography, 22(4), 294-306. https://doi.org/10.1007/s10548-009-0084-7
Carnevale, L., Maffei, A., Landolfi, A., Grillea, G., Carnevale, D., & Lembo, G. (2020). Brain functional magnetic resonance imaging highlights altered connections and functional networks in patients with hypertension. Hypertension, 76(5), 1480-1490. https://doi.org/10.1161/HYPERTENSIONAHA.120.15296
Carnevali, L., Pattini, E., Sgoifo, A., & Ottaviani, C. (2019). Effects of prefrontal transcranial direct current stimulation on autonomic and neuroendocrine responses to psychosocial stress in healthy humans. Stress. Advance Online Publication. https://doi.org/10.1080/10253890.2019.1625884
Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H. J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage, 68, 93-104. https://doi.org/10.1016/j.neuroimage.2012.11.038
Chew, T., Ho, K. A., & Loo, C. K. (2015). Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimulation, 8(6), 1130-1137. https://doi.org/10.1016/j.brs.2015.07.031
Chouchou, F., Mauguière, F., Vallayer, O., Catenoix, H., Isnard, J., Montavont, A., Jung, J., Pichot, V., Rheims, S., & Mazzola, L. (2019). How the insula speaks to the heart: Cardiac responses to insular stimulation in humans. Human Brain Mapping, 40(9), 2611-2622. https://doi.org/10.1002/hbm.24548
Ciccone, A. B., Deckert, J. A., Schlabs, C. R., Tilden, M. J., Herda, T. J., Gallagher, P. M., & Weir, J. P. (2019). Transcranial direct current stimulation of the temporal lobe does not affect high-intensity work capacity. Journal of Strength and Conditioning Research, 33(8), 2074-2086. https://doi.org/10.1519/JSC.0000000000002561
Clancy, J. A., Johnson, R., Raw, R., Deuchars, S. A., & Deuchars, J. (2014). Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimulation, 7(1), 97-104. https://doi.org/10.1016/j.brs.2013.08.005
Conde, V., Vollmann, H., Sehm, B., Taubert, M., Villringer, A., & Ragert, P. (2012). Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. Neuroimage, 60(2), 864-870. https://doi.org/10.1016/j.neuroimage.2012.01.052
Corp, D. T., Bereznicki, H., Clark, G. M., Youssef, G. J., Fried, P. J., Jannati, A., Davies, C. B., Gomes-Osman, J., Stamm, J., Chung, S. W., Bowe, S. J., Rogasch, N. C., Fitzgerald, P. B., Koch, G., Di Lazzaro, V., Pascual-Leone, A., Enticott, P. G., & Big TMS Data Collaboration. (2020). Large-scale analysis of interindividual variability in theta-burst stimulation data: Results from the 'Big TMS Data Collaboration'. Brain Stimulation, 13(5), 1476-1488. https://doi.org/10.1016/j.brs.2020.07.018
Critchley, H. D., Eccles, J., & Garfinkel, S. N. (2013). Interaction between cognition, emotion, and the autonomic nervous system. Handbook of Clinical Neurology, 117, 59-77. https://doi.org/10.1016/B978-0-444-53491-0.00006-7
Critchley, H. D., Mathias, C. J., Josephs, O., O'Doherty, J., Zanini, S., Dewar, B.-K., Cipolotti, L., Shallice, T., & Dolan, R. J. (2003). Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain, 126(Pt 10), 2139-2152. https://doi.org/10.1093/brain/awg216
da Silva, F. T., Browne, R. A., Pinto, C. B., Saleh Velez, F. G., do Egito, E. S., do Rêgo, J. T., da Silva, M. R., Dantas, P. M., & Fregni, F. (2017). Transcranial direct current stimulation in individuals with spinal cord injury: Assessment of autonomic nervous system activity. Restorative Neurology and Neuroscience, 35(2), 159-169. https://doi.org/10.3233/RNN-160685
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201-207.e1. https://doi.org/10.1016/j.brs.2009.03.005
Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: From physiology to network dynamics and back. Nature Neuroscience, 16(7), 3422. https://doi.org/10.1038/nn.3422
de Morree, H. M., Rutten, G. J., Szabó, B. M., Sitskoorn, M. M., & Kop, W. J. (2016). Effects of insula resection on autonomic nervous system activity. Journal of Neurosurgical Anesthesiology, 28(2), 153-158. https://doi.org/10.1097/ANA.0000000000000207
De Pisapia, N., Barchiesi, G., Jovicich, J., & Cattaneo, L. (2019). The role of medial prefrontal cortex in processing emotional self-referential information: A combined TMS/fMRI study. Brain Imaging and Behavior, 13, 603-614. https://doi.org/10.1007/s11682-018-9867-3
De Putter, L. M. S., Vanderhasselt, M.-A., Baeken, C., de Raedt, R., & Koster, E. H. W. (2015). Combining tDCS and working memory training to down regulate state rumination: A single-session double blind sham-controlled trial. Cognitive Therapy and Research, 39(6), 754-765. https://doi.org/10.1007/s10608-015-9710-8
del Paso, G. A., Langewitz, W., Mulder, L. J., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology, 50(5), 477-487. https://doi.org/10.1111/psyp.12027
Deng, Z. D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6(1), 1-13. https://doi.org/10.1016/j.brs.2012.02.005
Dericioglu, N., Demirci, M., Cataltepe, O., Akalan, N., & Saygi, S. (2013). Heart rate variability remains reduced and sympathetic tone elevated after temporal lobe epilepsy surgery. Seizure, 22(9), 713-718. https://doi.org/10.1016/j.seizure.2013.05.007
Di Lazzaro, V., Dileone, M., Pilato, F., Capone, F., Musumeci, G., Ranieri, F., Ricci, V., Bria, P., Di Iorio, R., de Waure, C., Pasqualetti, P., & Profice, P. (2011). Modulation of motor cortex neuronal networks by rTMS: Comparison of local and remote effects of six different protocols of stimulation. Journal of Neurophysiology, 105(5), 2150-2156. https://doi.org/10.1152/jn.00781.2010
Dissanayaka, T. D., Zoghi, M., Farrell, M., Egan, G. F., & Jaberzadeh, S. (2018). Sham transcranial electrical stimulation and its effects on corticospinal excitability: A systematic review and meta-analysis. Reviews in the Neurosciences, 29(2), 223-232. https://doi.org/10.1515/revneuro-2017-0026
Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. Neuroimage, 74, 266-275. https://doi.org/10.1016/j.neuroimage.2013.01.042
Era, V., Carnevali, L., Thayer, J. F., Candidi, M., & Ottaviani, C. (2021). Dissociating cognitive, behavioral and physiological stress-related responses through dorsolateral prefrontal cortex inhibition. Psychoneuroendocrinology, 124, 105070. https://doi.org/10.1016/j.psyneuen.2020.105070
Erdogan, E. T., Saydam, S. S., Kurt, A., & Karamursel, S. (2018). Anodal transcranial direct current stimulation of the motor cortex in healthy volunteers. Neurophysiology, 50(2), 124-130. https://doi.org/10.1007/s11062-018-9726-2
Esser, S. K., Huber, R., Massimini, M., Peterson, M. J., Ferrarelli, F., & Tononi, G. (2006). A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. Brain Research Bulletin, 69(1), 3. https://doi.org/10.1016/j.brainresbull.2005.11.003
Filmer, H. L., Ehrhardt, S. E., Shaw, T. B., Mattingley, J. B., & Dux, P. E. (2019). The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology. NeuroImage, 196, 41-48. https://doi.org/10.1016/j.neuroimage.2019.04.026
Foerster, Á. S., Rezaee, Z., Paulus, W., Nitsche, M. A., & Dutta, A. (2018). Effects of cathode location and the size of anode on anodal transcranial direct current stimulation over the leg motor area in healthy humans. Frontiers in Neuroscience, 12, 443. https://doi.org/10.3389/fnins.2018.00443
Forte, G., Favieri, F., & Casagrande, M. (2019). Heart rate variability and cognitive function: A systematic review. Frontiers in Neuroscience, 13, e00710. https://doi.org/10.3389/fnins.2019.00710
Germano-Soares, A. H., Montenegro, R. A., Cavalcante, B. R., Domingues, W. J. R., de Lima, P. F. M., Meneses, A. L., Almeida, T. R. M., Okano, A. H., & Ritti-Dias, R. M. (2017). Hemodynamic and autonomic responses after a single session of resistance exercise following anodal motor cortex tDCS. Isokinetics and Exercise Science, 25(2), 113-120. https://doi.org/10.3233/IES-160653
Ghasemian-Shirvan, E., Farnad, L., Mosayebi-Samani, M., Verstraelen, S., Meesen, R. L. J., Kuo, M.-F., & Nitsche, M. A. (2020). Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study. Brain Stimulation, 13(6), 1588-1599. https://doi.org/10.1016/j.brs.2020.09.004
Gillie, B. L., & Thayer, J. F. (2014). Individual differences in resting heart rate variability and cognitive control in posttraumatic stress disorder. Frontiers in Psychology, 5, 758. https://doi.org/10.3389/fpsyg.2014.00758
Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96(12), 1255-1261. https://doi.org/10.1113/expphysiol.2010.056259
Goodwin, G. M., McCloskey, D. I., & Mitchell, J. H. (1972). Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. Journal of Physiology, 226(1), 173-190. https://doi.org/10.1113/jphysiol.1972.sp009979
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263-285. https://doi.org/10.1016/j.biopsycho.2005.11.014
Hallam, G. P., Whitney, C., Hymers, M., Gouws, A. D., & Jefferies, E. (2016). Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia, 93(Pt A), 40-52. https://doi.org/10.1016/j.neuropsychologia.2016.09.012
Hamner, J. W., Villamar, M. F., Fregni, F., & Taylor, J. A. (2015). Transcranial direct current stimulation (tDCS) and the cardiovascular responses to acute pain in humans. Clinical Neurophysiology, 126(5), 1039-1046. https://doi.org/10.1016/j.clinph.2014.08.019
Hassanzahraee, M., Nitsche, M. A., Zoghi, M., & Jaberzadeh, S. (2020). Determination of anodal tDCS duration threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Brain Stimulation, 13(3), 832-839. https://doi.org/10.1016/j.brs.2020.02.027
Hedges, L. V., & Olkin, I. (2014). Statistical method for meta-analysis. Elsevier Science. http://gbv.eblib.com/patron/FullRecord.aspx?p=1901162
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39-65. https://doi.org/10.1002/jrsm.5
Heinz, G., de Angelis, K., Dal Corso, S., de Sousa, M. H. G., Viana, A., Dos Santos, F., Correa, J. C. F., & Correa, F. I. (2020). Effects of transcranial direct current stimulation (tDCS) and exercises treadmill on autonomic modulation of hemiparetic patients due to stroke-clinic test, controlled, randomized, double-blind. Frontiers in Neurology, 10, e01402. https://doi.org/10.3389/fneur.2019.01402
Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 95-99. https://doi.org/10.1023/b:brat.0000006333.93597.9d
Hillebrand, S., Gast, K. B., de Mutsert, R., Swenne, C. A., Jukema, J. W., Middeldorp, S., Rosendaal, F. R., & Dekkers, O. M. (2013). Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression. Europace, 15(5), 742-749. https://doi.org/10.1093/europace/eus341
Hilz, M. J., Devinsky, O., Szczepanska, H., Borod, J. C., Marthol, H., & Tutaj, M. (2006). Right ventromedial prefrontal lesions result in paradoxical cardiovascular activation with emotional stimuli. Brain, 129(Pt 12), 3343-3355. https://doi.org/10.1093/brain/awl299
Holgado, D., Zandonai, T., Ciria, L. F., Zabala, M., Hopker, J., & Sanabria, D. (2019). Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and power output. PLoS ONE, 14(2), e0210873. https://doi.org/10.1371/journal.pone.0210873
Holmes, N. P., & Tamè, L. (2019). Locating primary somatosensory cortex in human brain stimulation studies: Systematic review and meta-analytic evidence. Journal of Neurophysiology, 121(1), 152-162. https://doi.org/10.1152/jn.00614.2018
Hoogendam, J. M., Ramakers, G. M. J., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3(2), 95-118. https://doi.org/10.1016/j.brs.2009.10.005
Huber, T. J., Schneider, U., & Rollnik, J. (2003). Gender differences in the effect of repetitive transcranial magnetic stimulation in schizophrenia. Psychiatry Research, 120(1), 103-105. https://doi.org/10.1016/S0165-1781(03)00170-7
Hugdahl, K. (1996). Cognitive influences on human autonomic nervous system function. Current Opinion in Neurobiology, 6(2), 252-258. https://doi.org/10.1016/s0959-4388(96)80080-8
Iezzi, E., Suppa, A., Conte, A., Li Voti, P., Bologna, M., & Berardelli, A. (2011). Short-term and long-term plasticity interaction in human primary motor cortex. European Journal of Neuroscience, 33(10), 1908-1915. https://doi.org/10.1111/j.1460-9568.2011.07674.x
Iseger, T. A., Arns, M., Downar, J., Blumberger, D. M., Daskalakis, Z. J., & Vila-Rodriguez, F. (2020). Cardiovascular differences between sham and active iTBS related to treatment response in MDD. Brain Stimulation, 13(1), 167-174. https://doi.org/10.1016/j.brs.2019.09.016
Iseger, T. A., van Bueren, N., Kenemans, J. L., Gevirtz, R., & Arns, M. (2020). A frontal-vagal network theory for major depressive disorder: Implications for optimizing neuromodulation techniques. Brain Stimulation, 13(1), 1-9. https://doi.org/10.1016/j.brs.2019.10.006
Jackson, D., Riley, R., & White, I. R. (2011). Multivariate meta-analysis: Potential and promise. Statistics in Medicine, 30(20), 2481-2498. https://doi.org/10.1002/sim.4172
Jandackova, V. K., Scholes, S., Britton, A., & Steptoe, A. (2016). Are changes in heart rate variability in middle-aged and older people normative or caused by pathological conditions? Findings from a large population-based longitudinal cohort study. Journal of the American Heart Association, 5(2), e002365. https://doi.org/10.1161/JAHA.115.002365
Jänig, W. (2006). The integrative action of the autonomic nervous system: Neurobiology of homeostasis. Cambridge University Press.
Kao, Y.-C., Tzeng, N.-S., Chao, C.-Y., Chang, C.-C., & Chang, H.-A. (2020). Modulation of self-appraisal of illness, medication adherence, life quality and autonomic functioning by transcranial direct current stimulation in schizophrenia patients. Clinical Neurophysiology, 131(8), 1997-2007. https://doi.org/10.1016/j.clinph.2020.02.029
Kemp, A. H., & Quintana, D. S. (2013). The relationship between mental and physical health: Insights from the study of heart rate variability. International Journal of Psychophysiology, 89(3), 288-296. https://doi.org/10.1016/j.ijpsycho.2013.06.018
Kleiger, R. E., Stein, P. K., & Bigger, J. T., Jr. (2005). Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10(1), 88-101. https://doi.org/10.1111/j.1542-474X.2005.10101.x
Klomjai, W., Katz, R., & Lackmy-Vallée, A. (2015). Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Annals of Physical and Rehabilitation Medicine, 58(4), 208-213. https://doi.org/10.1016/j.rehab.2015.05.005
Koenig, J., Abler, B., Agartz, I., Åkerstedt, T., Andreassen, O. A., Anthony, M., Bär, K. J., Bertsch, K., Brown, R. C., Brunner, R., Carnevali, L., Critchley, H. D., Cullen, K. R., de Geus, E., de la Cruz, F., Dziobek, I., Ferger, M. D., Fischer, H., Flor, H., … Quintana, D. S. (2021). Cortical thickness and resting-state cardiac function across the lifespan: A cross-sectional pooled mega-analysis. Psychophysiology, 58(7), e13688. https://doi.org/10.1111/psyp.13688
Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: A meta-analysis. Neuroscience and Biobehavioral Reviews, 64, 288-310. https://doi.org/10.1016/j.neubiorev.2016.03.007
Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201(2), 239-243. https://doi.org/10.1016/j.bbr.2009.03.004
Kreuzer, P. M., Schecklmann, M., Lehner, A., Wetter, T. C., Poeppl, T. B., Rupprecht, R., de Ridder, D., Landgrebe, M., & Langguth, B. (2015). The ACDC pilot trial: Targeting the anterior cingulate by double cone coil rTMS for the treatment of depression. Brain Stimulation, 8(2), 240-246. https://doi.org/10.1016/j.brs.2014.11.014
Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J., & Lane, R. D. (2018). Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosomatic Medicine, 80(6), 581-587. https://doi.org/10.1097/PSY.0000000000000603
Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644-648. https://doi.org/10.1016/j.brs.2012.09.010
Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal tank theory: The three rs of cardiac vagal control functioning-Resting, reactivity, and recovery. Frontiers in Neuroscience, 12, 458. https://doi.org/10.3389/fnins.2018.00458
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research-Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
Lee, Y.-S., Bae, S.-H., & Kim, K.-Y. (2019). Effects of repetitive transcranial magnetic stimulation on psychological aspects of patients with chronic lower back pain. Journal of Magnetics, 24(3), 543-548. https://doi.org/10.4283/JMAG.2019.24.3.543
Levasseur-Moreau, J., Brunelin, J., & Fecteau, S. (2013). Non-invasive brain stimulation can induce paradoxical facilitation. Are these neuroenhancements transferable and meaningful to security services? Frontiers in Human Neuroscience, 7, 449. https://doi.org/10.3389/fnhum.2013.00449
Levinthal, D. J., & Strick, P. L. (2012). The motor cortex communicates with the kidney. Journal of Neuroscience, 32(19), 6726-6731. https://doi.org/10.1523/JNEUROSCI.0406-12.2012
Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9, 181. https://doi.org/10.3389/fncel.2015.00181
Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., Gordon, E., & Williams, L. M. (2005). A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear. Neuroimage, 24(1), 235-243. https://doi.org/10.1016/j.neuroimage.2004.08.016
López-Alonso, V., Fernández-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342-2347. https://doi.org/10.1016/j.clinph.2015.03.022
Lu, M., & Ueno, S. (2017). Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS ONE, 12(6), e0178422. https://doi.org/10.1371/journal.pone.0178422
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000a). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 111(5), 800-805. https://doi.org/10.1016/s1388-2457(99)00323-5
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000b). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research, 133(4), 425-430. https://doi.org/10.1007/s002210000432
Makovac, E., Thayer, J. F., & Ottaviani, C. (2017). A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neuroscience and Biobehavioral Reviews, 74(Pt B). https://doi.org/10.1016/j.neubiorev.2016.05.001
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
Marins, F. R., Limborço-Filho, M., Xavier, C. H., Biancardi, V. C., Vaz, G. C., Stern, J. E., Oppenheimer, S. M., & Fontes, M. A. (2016). Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clinical and Experimental Pharmacology & Physiology, 43(4), 484-493. https://doi.org/10.1111/1440-1681.12542
Masuki, S., & Nose, H. (2009). Increased cerebral activity suppresses baroreflex control of heart rate in freely moving mice. Journal of Physiology, 587(Pt 23), 5783-5794. https://doi.org/10.1113/jphysiol.2009.176164
Mather, M., Joo Yoo, H., Clewett, D. V., Lee, T. H., Greening, S. G., Ponzio, A., Min, J., & Thayer, J. F. (2017). Higher locus coeruleus MRI contrast is associated with lower parasympathetic influence over heart rate variability. Neuroimage, 150, 329-335. https://doi.org/10.1016/j.neuroimage.2017.02.025
Matsumoto, H., & Ugawa, Y. (2016). Adverse events of tDCS and tACS: A review. Clinical neurophysiology practice, 2, 19-25. https://doi.org/10.1016/j.cnp.2016.12.003
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. https://doi.org/10.1016/j.ijsu.2010.02.007
Morrissey, M. B. (2016). Rejoinder: Further considerations for meta-analysis of transformed quantities such as absolute values. Journal of Evolutionary Biology, 29, 1922-1931. https://doi.org/10.1111/jeb.12951
Mulcahy, J. S., Larsson, D., Garfinkel, S. N., & Critchley, H. D. (2019). Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage, 202, 116072. https://doi.org/10.1016/j.neuroimage.2019.116072
Nagai, M., Hoshide, S., & Kario, K. (2010). The insular cortex and cardiovascular system: A new insight into the brain-heart axis. Journal of the American Society of Hypertension, 4(4), 174-182. https://doi.org/10.1016/j.jash.2010.05.001
Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., & Barbieri, R. (2008). Brain correlates of autonomic modulation: Combining heart rate variability with fMRI. Neuroimage, 42(1), 169-177. https://doi.org/10.1016/j.neuroimage.2008.04.238
Naumczyk, P., Sabisz, A., Witkowska, M., Graff, B., Jodzio, K., Gąsecki, D., Szurowska, E., & Narkiewicz, K. (2017). Compensatory functional reorganization may precede hypertension-related brain damage and cognitive decline: A functional magnetic resonance imaging study. Journal of Hypertension, 35(6), 1252-1262. https://doi.org/10.1097/HJH.0000000000001293
Nguyen, V. T., Breakspear, M., Hu, X., & Guo, C. C. (2016). The integration of the internal and external milieu in the insula during dynamic emotional experiences. Neuroimage, 124(Pt A), 455-463. https://doi.org/10.1016/j.neuroimage.2015.08.078
Nikolin, S., Boonstra, T. W., Loo, C. K., & Martin, D. (2017). Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PLoS ONE, 12(8), e0181833. https://doi.org/10.1371/journal.pone.0181833
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206-223. https://doi.org/10.1016/j.brs.2008.06.004
Nonnekes, J., Arrogi, A., Munneke, M. A., van Asseldonk, E. H., Oude Nijhuis, L. B., Geurts, A. C., & Weerdesteyn, V. (2014). Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS ONE, 9(9), e107731. https://doi.org/10.1371/journal.pone.0107731
Notzon, S., Deppermann, S., Fallgatter, A., Diemer, J., Kroczek, A., Domschke, K., Zwanzger, P., & Ehlis, A.-C. (2015). Psychophysiological effects of an iTBS modulated virtual reality challenge including participants with spider phobia. Biological Psychology, 112, 66-76. https://doi.org/10.1016/j.biopsycho.2015.10.003
Oppenheimer, S. M., Gelb, A., Girvin, J. P., & Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42(9), 1727-1732. https://doi.org/10.1212/wnl.42.9.1727
Ottaviani, C., Mancini, F., Provenzano, S., Collazzoni, A., & D'Olimpio, F. (2018). Deontological morality can be experimentally enhanced by increasing disgust: A transcranial direct current stimulation study. Neuropsychologia, 119, 474-481. https://doi.org/10.1016/j.neuropsychologia.2018.09.009
Ozdemir, R. A., Tadayon, E., Boucher, P., Momi, D., Karakhanyan, K. A., Fox, M. D., Halko, M. A., Pascual-Leone, A., Shafi, M. M., & Santarnecchi, E. (2020). Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition. Proceedings of the National Academy of Sciences of the United States of America, 117(14), 8115-8125. https://doi.org/10.1073/pnas.1911240117
Page, M. J., Higgins, J. P., Clayton, G., Sterne, J. A., Hróbjartsson, A., & Savović, J. (2016). Empirical evidence of study design biases in randomized trials: Systematic review of meta-epidemiological studies. PLoS ONE, 11(7), e0159267. https://doi.org/10.1371/journal.pone.0159267
Park, S.-B., Sung, D. J., Kim, B., Kim, S., & Han, J.-K. (2019). Transcranial direct current stimulation of motor cortex enhances running performance. PLoS ONE, 14(2), e0211902. https://doi.org/10.1371/journal.pone.0211902
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience-Virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232-237. https://doi.org/10.1016/s0959-4388(00)00081-7
Penttilä, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., Coffeng, R., & Scheinin, H. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clinical Physiology, 21(3), 365-376. https://doi.org/10.1046/j.1365-2281.2001.00337.x
Perna, G., Riva, A., Defillo, A., Sangiorgio, E., Nobile, M., & Caldirola, D. (2020). Heart rate variability: Can it serve as a marker of mental health resilience? Special Section on "Translational and Neuroscience Studies in Affective Disorders" Section Editor, Maria Nobile MD, PhD. Journal of Affective Disorders, 263, 754-761. https://doi.org/10.1016/j.jad.2019.10.017
Petrocchi, N., Piccirillo, G., Di Fiorucci, C., Moscucci, F., Di Iorio, C., Mastropietri, F., Parrotta, I., Pascucci, M., Magrì, D., & Ottaviani, C. (2017). Transcranial direct current stimulation enhances soothing positive affect and vagal tone. Neuropsychologia, 96, 256-261. https://doi.org/10.1016/j.neuropsychologia.2017.01.028
Piccirillo, G., Ottaviani, C., Fiorucci, C., Petrocchi, N., Moscucci, F., Di Iorio, C., Mastropietri, F., Parrotta, I., Pascucci, M., & Magrì, D. (2016). Transcranial direct current stimulation improves the QT variability index and autonomic cardiac control in healthy subjects older than 60 years. Clinical Interventions in Aging, 11, 1687-1695. https://doi.org/10.2147/CIA.S116194
Pigott, T. D., & Polanin, J. R. (2020). Methodological guidance paper: High-quality meta-analysis in a systematic review. Review of Educational Research, 90(1), 24-46. https://doi.org/10.3102/0034654319877153
Poppa, T., de Witte, S., Vanderhasselt, M.-A., Bechara, A., & Baeken, C. (2020). Theta-burst stimulation and frontotemporal regulation of cardiovascular autonomic outputs: The role of state anxiety. International Journal of Psychophysiology, 149, 25-34. https://doi.org/10.1016/j.ijpsycho.2019.12.011
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116-143. https://doi.org/10.1016/j.biopsycho.2006.06.009
Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2(4), 241-245. https://doi.org/10.1016/j.brs.2009.02.004
Pulopulos, M. M., Schmausser, M., de Smet, S., Vanderhasselt, M.-A., Baliyan, S., Venero, C., Baeken, C., & de Raedt, R. (2020). The effect of HF-rTMS over the left DLPFC on stress regulation as measured by cortisol and heart rate variability. Hormones and Behavior, 124, 104803. https://doi.org/10.1016/j.yhbeh.2020.104803
Pustejovsky, J. E. (2020). clubSandwich (Version 0.4.2) [computer software]. https://github.com/jepusto/clubSandwich
Pustejovsky, J. E., & Rodgers, M. A. (2019). Testing for funnel plot asymmetry of standardized mean differences. Research Synthesis Methods, 10(1), 57-71. https://doi.org/10.1002/jrsm.1332
Pustejovsky, J. E., & Tipton, E. (2021). Meta-analysis with robust variance estimation: Expanding the range of working models. Prevention Science. https://doi.org/10.1007/s11121-021-01246-3
R Core Team. (2020). R: A language and environment for statisitcal computing (version 4.0.3) [computer software]. R Foundation for Statistical Computing. https://www.R-project.org
Raimondo, R. J. S., Uribe, C. E., & Brasil-Neto, J. P. (2012). Lack of clinically detectable acute changes on autonomic or thermoregulatory functions in healthy subjects after transcranial direct current stimulation (tDCS). Brain Stimulation, 5(3), 196-200. https://doi.org/10.1016/j.brs.2011.03.009
Raven, P. B., Fadel, P. J., & Smith, S. A. (2002). The influence of central command on baroreflex resetting during exercise. Exercise and Sport Sciences Reviews, 30(1), 39-44. https://doi.org/10.1097/00003677-200201000-00008
Reisert, M., Weiller, C., & Hosp, J. A. (2021). Displaying the autonomic processing network in humans-A global tractography approach. Neuroimage, 231, 117852. https://doi.org/10.1016/j.neuroimage.2021.117852
Remue, J., Vanderhasselt, M.-A., Baeken, C., Rossi, V., Tullo, J., & de Raedt, R. (2016). The effect of a single HF-rTMS session over the left DLPFC on the physiological stress response as measured by heart rate variability. Neuropsychology, 30(6), 756-766. https://doi.org/10.1037/neu0000255
Rich, T. L., & Gillick, B. T. (2019). Electrode placement in transcranial direct current stimulation-how reliable is the determination of C3/C4? Brain Sciences, 9(3), 69. https://doi.org/10.3390/brainsci9030069
Riley, R. D. (2009). Multivariate meta-analysis: The effect of ignoring within-study correlation. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(4), 789-811. https://doi.org/10.1111/j.1467-985X.2008.00593.x
Riley, R. D., Jackson, D., Salanti, G., Burke, D. L., Price, M., Kirkham, J., & White, I. R. (2017). Multivariate and network meta-analysis of multiple outcomes and multiple treatments: Rationale, concepts, and examples. BMJ, 358, j3932. https://doi.org/10.1136/bmj.j3932
Rodgers, M. A., & Pustejovsky, J. E. (2020). Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes. Psychological Methods. Advance Online Publication.
Ruit, K. G., & Neafsey, E. J. (1988). Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Research, 457(2), 310-321. https://doi.org/10.1016/0006-8993(88)90701-9
Sanchez-Larsen, A., Principe, A., Ley, M., Navarro-Cuartero, J., & Rocamora, R. (2021). Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula. Annals of Neurology, 89(6), 1172-1180. https://doi.org/10.1002/ana.26074
Sauvaget, A., Bulteau, S., Guilleux, A., Leboucher, J., Pichot, A., Valrivière, P., Vanelle, J.-M., Sébille-Rivain, V., & Grall-Bronnec, M. (2018). Both active and sham low-frequency rTMS single sessions over the right DLPFC decrease cue-induced cravings among pathological gamblers seeking treatment: A randomized, double-blind, sham-controlled crossover trial. Journal of Behavioral Addictions, 7(1), 126-136. https://doi.org/10.1556/2006.7.2018.14
Schecklmann, M., Schmaußer, M., Klinger, F., Kreuzer, P. M., Krenkel, L., & Langguth, B. (2020). Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil. Scientific reports, 10(1), 1644. https://doi.org/10.1038/s41598-020-58034-2
Schestatsky, P., Simis, M., Freeman, R., Pascual-Leone, A., & Fregni, F. (2013). Non-invasive brain stimulation and the autonomic nervous system. Clinical Neurophysiology, 124(9), 1716-1728. https://doi.org/10.1016/j.clinph.2013.03.020
Schilberg, L., Schuhmann, T., & Sack, A. T. (2017). Interindividual variability and intraindividual reliability of intermittent theta burst stimulation-induced neuroplasticity mechanisms in the healthy brain. Journal of Cognitive Neuroscience, 29(6), 1022-1032. https://doi.org/10.1162/jocn_a_01100
Sclocco, R., Beissner, F., Desbordes, G., Polimeni, J. R., Wald, L. L., Kettner, N. W., Kim, J., Garcia, R. G., Renvall, V., Bianchi, A. M., Cerutti, S., Napadow, V., & Barbieri, R. (2016). Neuroimaging brainstem circuitry supporting cardiovagal response to pain: A combined heart rate variability/ultrahigh-field (7T) functional magnetic resonance imaging study. Philosophical Transactions: Series A, Mathematical, Physical, and Engineering Sciences, 374(2067), 20150189. https://doi.org/10.1098/rsta.2015.0189
Sclocco, R., Kim, J., Garcia, R. G., Sheehan, J. D., Beissner, F., Bianchi, A. M., Cerutti, S., Kuo, B., Barbieri, R., & Napadow, V. (2016). Brain circuitry supporting multi-organ autonomic outflow in response to nausea. Cerebral Cortex, 26(2), 485-497. https://doi.org/10.1093/cercor/bhu172
Seibt, O., Brunoni, A. R., Huang, Y., & Bikson, M. (2015). The pursuit of DLPFC: Non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 590-602. https://doi.org/10.1016/j.brs.2015.01.401
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Siebner, H. R., Hartwigsen, G., Kassuba, T., & Rothwell, J. C. (2009). How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex, 45(9), 1035-1042. https://doi.org/10.1016/j.cortex.2009.02.007
Silber, D. H., Sinoway, L. I., Leuenberger, U. A., & Amassian, V. E. (2000). Magnetic stimulation of the human motor cortex evokes skin sympathetic nerve activity. Journal of Applied Physiology, 88(1), 126-134. https://doi.org/10.1152/jappl.2000.88.1.126
Silva, D. S., Coan, A. C., & Avelar, W. M. (2019). Neuropsychological and neuroimaging evidences of cerebral dysfunction in stroke-free patients with atrial fibrillation: A review. Journal of the Neurological Sciences, 399, 172-181. https://doi.org/10.1016/j.jns.2019.02.027
Silva, L. M., Silva, K., Lira-Bandeira, W. G., Costa-Ribeiro, A. C., & Araújo-Neto, S. A. (2021). Localizing the primary motor cortex of the hand by the 10-5 and 10-20 systems for neurostimulation: An MRI study. Clinical EEG and Neuroscience, 52(6), 427-435. https://doi.org/10.1177/1550059420934590
Silvani, A., Calandra-Buonaura, G., Dampney, R. A., & Cortelli, P. (2016). Brain-heart interactions: Physiology and clinical implications. Philosophical Transactions: Series A, Mathematical, Physical, and Engineering Sciences, 374(2067), 20150181. https://doi.org/10.1098/rsta.2015.0181
Sklerov, M., Dayan, E., & Browner, N. (2019). Functional neuroimaging of the central autonomic network: Recent developments and clinical implications. Clinical Autonomic Research, 29(6), 555-566. https://doi.org/10.1007/s10286-018-0577-0
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 75, 274-296. https://doi.org/10.1016/j.neubiorev.2017.02.003
Smith, S. A., Mitchell, J. H., & Garry, M. G. (2006). The mammalian exercise pressor reflex in health and disease. Experimental Physiology, 91(1), 89-102. https://doi.org/10.1113/expphysiol.2005.032367
Steinfurth, E., Wendt, J., Geisler, F., Hamm, A. O., Thayer, J. F., & Koenig, J. (2018). Resting state vagally-mediated heart rate variability is associated with neural activity during explicit emotion regulation. Frontiers in Neuroscience, 12, 794. https://doi.org/10.3389/fnins.2018.00794
Sterne, J., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898. https://doi.org/10.1136/bmj.l4898
Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 99-110). Wiley. https://doi.org/10.1002/0470870168.ch6
Tanner-Smith, E. E., & Tipton, E. (2014). Robust variance estimation with dependent effect sizes: Practical considerations including a software tutorial in Stata and SPSS. Research Synthesis Methods, 5(1), 13-30. https://doi.org/10.1002/jrsm.1091
Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): A beginner's guide for design and implementation. Frontiers in Neuroscience, 11, 641. https://doi.org/10.3389/fnins.2017.00641
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141-153. https://doi.org/10.1007/s12160-009-9101-z
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201-216. https://doi.org/10.1016/S0165-0327(00)00338-4
Thayer, J. F., & Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74(2), 224-242. https://doi.org/10.1016/j.biopsycho.2005.11.013
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience and biobehavioral reviews, 36(2), 747-756. https://doi.org/10.1016/j.neubiorev.2011.11.009
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 81-88. https://doi.org/10.1016/j.neubiorev.2008.08.004
Thayer, J. F., Sollers, J. J., 3rd, Labiner, D. M., Weinand, M., Herring, A. M., Lane, R. D., & Ahern, G. L. (2009). Age-related differences in prefrontal control of heart rate in humans: A pharmacological blockade study. International Journal of Psychophysiology, 72(1), 81-88. https://doi.org/10.1016/j.ijpsycho.2008.04.007
Thomas, F., Pixa, N. H., Berger, A., Cheng, M. Y., Doppelmayr, M., & Steinberg, F. (2020). Neither cathodal nor anodal transcranial direct current stimulation on the left dorsolateral prefrontal cortex alone or applied during moderate aerobic exercise modulates executive function. Neuroscience, 443, 71-83. https://doi.org/10.1016/j.neuroscience.2020.07.017
Trapp, N. T., Bruss, J., King Johnson, M., Uitermarkt, B. D., Garrett, L., Heinzerling, A., Wu, C., Koscik, T. R., Ten Eyck, P., & Boes, A. D. (2020). Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimulation, 13(3), 578-581. https://doi.org/10.1016/j.brs.2020.01.010
Valenza, G., Sclocco, R., Duggento, A., Passamonti, L., Napadow, V., Barbieri, R., & Toschi, N. (2019). The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow. Neuroimage, 197, 383-390. https://doi.org/10.1016/j.neuroimage.2019.04.075
Valenzuela, P. L., Amo, C., Sanchez-Martinez, G., Torrontegi, E., Vazquez-Carrion, J., Montalvo, Z., Lucia, A., & de La Villa, P. (2019). Enhancement of mood but not performance in elite athletes with transcranial direct-current stimulation. International Journal of Sports Physiology and Performance, 14(3), 310-316. https://doi.org/10.1123/ijspp.2018-0473
van den Eynde, F., Claudino, A. M., Campbell, I., Horrell, L., Andiappan, M., Stahl, D., & Schmidt, U. (2011). Cardiac safety of repetitive transcranial magnetic stimulation in bulimic eating disorders. Brain Stimulation, 4(2), 112-114. https://doi.org/10.1016/j.brs.2010.06.003
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., Higgins, J. P., Langan, D., & Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research Synthesis Methods, 7(1), 55-79. https://doi.org/10.1002/jrsm.1164
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/10.18637/jss.v036.i03
Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112-125. https://doi.org/10.1002/jrsm.11
Walsh, V. (1998). Brain mapping: Faradization of the mind. Current Biology, 8(1), R8-R11. https://doi.org/10.1016/S0960-9822(98)70098-3
Weller, S., Nitsche, M. A., & Plewnia, C. (2020). Enhancing cognitive control training with transcranial direct current stimulation: A systematic parameter study. Brain Stimulation, 13(5), 1358-1369. https://doi.org/10.1016/j.brs.2020.07.006
Williamson, J. W., Fadel, P. J., & Mitchell, J. H. (2006). New insights into central cardiovascular control during exercise in humans: A central command update. Experimental Physiology, 91(1), 51-58. https://doi.org/10.1113/expphysiol.2005.032037
Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., Fregni, F., Herrmann, C. S., Kappenman, E. S., Knotkova, H., Liebetanz, D., Miniussi, C., Miranda, P. C., Paulus, W., Priori, A., Reato, D., Stagg, C., Wenderoth, N., & Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031-1048. https://doi.org/10.1016/j.clinph.2015.11.012
Yasui, Y., Breder, C. D., Saper, C. B., & Cechetto, D. F. (1991). Autonomic responses and efferent pathways from the insular cortex in the rat. Journal of Comparative Neurology, 303(3), 355-374. https://doi.org/10.1002/cne.903030303

Auteurs

Maximilian Schmaußer (M)

Institute of Psychology, German Sport University, Cologne, Germany.

Sven Hoffmann (S)

Institute of Psychology, University of Hagen, Hagen, Germany.

Markus Raab (M)

Institute of Psychology, German Sport University, Cologne, Germany.
School of Applied Sciences, London South Bank University, London, UK.

Sylvain Laborde (S)

Institute of Psychology, German Sport University, Cologne, Germany.
UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH