Resonance Rayleigh scattering approach based on association complex formation with erythrosine B for determination of venlafaxine, application to the dosage form and spiked human plasma.
antidepressants
human plasma
pharmaceutical analysis
resonance Rayleigh scattering
venlafaxine hydrochloride
Journal
Luminescence : the journal of biological and chemical luminescence
ISSN: 1522-7243
Titre abrégé: Luminescence
Pays: England
ID NLM: 100889025
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
revised:
07
05
2022
received:
23
04
2022
accepted:
13
05
2022
pubmed:
19
5
2022
medline:
7
7
2022
entrez:
18
5
2022
Statut:
ppublish
Résumé
The interaction of venlafaxine hydrochloride (VLX) with erythrosine B was investigated using a resonance Rayleigh scattering (RRS) spectroscopic technique. In acetate buffer (pH 3.4), erythrosine B reacted with VLX to form a 1:1 ion-pair complex with concomitant enhancement in RRS intensity that was measured at 330 nm. In addition, the stability constant and the change in free energy of the reaction were estimated. Based on this interaction a new method was developed for a sensitive VLX analysis using erythrosine B as a probe. The results indicated that this method had good selectivity in the presence of coexisting compounds. The scattering intensity (ΔI
Substances chimiques
Pharmaceutical Preparations
0
Venlafaxine Hydrochloride
7D7RX5A8MO
Erythrosine
PN2ZH5LOQY
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1215-1222Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
R. R. Levine, C. T. Walsh, R. D. Schwartz-Bloom, Pharmacology: drug actions and reactions, CRC Press 2000.
T. Monograph, European Directorate for the Quality of Medicine & Health Care of the Council of Europe (EDQM), edn, 2017, 9, 3104-3105.
K. Raghubabu, L. S. Swarup, B. Kalyanaramu, M. Rao, C. Ramdas, E- J. Chem. 2012, 9, 1645. https://doi.org/10.1155/2012/908715
A. Önal, Ş. E. Kepeki, S. M. Çetin, S. ErtÜrk, J. AOAC Int. 2006, 89, 966. https://doi.org/10.1093/jaoac/89.4.966
R. Sharma, S. Jain, Asian J. Chem. 2009, 21, 7440.
R. S. Das, Y. Agrawal, Int. J. Spectrosc. 2012, 27, 59. https://doi.org/10.1155/2012/567207
S. Shahnawaz, Z. Siddiqui, Q. Hoda, J. Fluoresc. 2010, 20(4), 821. https://doi.org/10.1007/s10895-010-0624-2
S. T. Ulu, Opt. Spectrosc. 2011, 110(4), 508. https://doi.org/10.1134/S0030400X11040175
N. C. Purdel, D. Balalau, M. Ilie, C. C. Arama, Farmacia 2010, 58, 62.
S. Rudaz, E. Calleri, L. Geiser, S. Cherkaoui, J. Prat, J. L. Veuthey, Electrophoresis 2003, 24(15), 2633. https://doi.org/10.1002/elps.200305481
E. Pietracci, A.-M. Bermejo, I. Álvarez, P. Cabarcos, W. Balduini, M.-J. Tabernero, Forensic Toxicol. 2013, 31, 124. https://doi.org/10.1007/s11419-012-0152-7
I. Papoutsis, A. Khraiwesh, P. Nikolaou, C. Pistos, C. Spiliopoulou, S. Athanaselis, J. Pharm. Biomed. 2012, 70, 557. https://doi.org/10.1016/j.jpba.2012.05.007
S. M. Wille, A. Els, M. H. Piette, L. K. Van Overschelde, C. H. Van Peteghem, W. E. Lambert, Int. J. Leg. Med. 2009, 123(6), 451. https://doi.org/10.1007/s00414-008-0287-6
S. M. Wille, P. Van Hee, H. M. Neels, C. H. Van Peteghem, W. E. Lambert, J. Chromatogr. A 2007, 1176(1-2), 236. https://doi.org/10.1016/j.chroma.2007.10.096
I. Amundsen, Å. M. Øiestad, D. Ekeberg, L. Kristoffersen, J. Chromatogr., B 2013, 927, 112. https://doi.org/10.1016/j.jchromb.2012.12.039
R. Uřinovská, H. Brozmanová, P. Šištík, P. Šilhán, I. Kacířová, K. Lemr, M. Grundmann, J. Chromatogr., B 2012, 907, 101. https://doi.org/10.1016/j.jchromb.2012.09.009
V. Samanidou, K. Pantazidou, L. Kovatsi, S. Njau, A. Livanos, J. Sep. Sci. 2012, 35(7), 839. https://doi.org/10.1002/jssc.201100849
V. Samanidou, C. Nazyropoulou, L. Kovatsi, Bioanalysis 2011, 3(15), 1713. https://doi.org/10.4155/bio.11.161
R. Nageswara Rao, A. Narasa Raju, J. Sep. Sci. 2006, 29(18), 2733. https://doi.org/10.1002/jssc.200600225
B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta 2011, 56(11), 4188. https://doi.org/10.1016/j.electacta.2011.01.097
A. A. Ensafi, R. Faridfar, A. R. Allafchian, Sensor Lett. 2011, 9, 479. https://doi.org/10.1166/sl.2011.1501
M. A. Abdel-Lateef, S. M. Derayea, D. A. N. El-Deen, A. Almahri, M. Oraby, R. Soc. Open Sci. 2021, 8(1), 201545. https://doi.org/10.1098/rsos.201545
A. Almahri, M. A. Abdel-Lateef, Luminescence 2021, 36(6), 1544. https://doi.org/10.1002/bio.4099
S. M. Derayea, R. Ali, A. A. Abu-hassan, Luminescence 2021, 36(8), 1977. https://doi.org/10.1002/bio.4133
A. A. Hamad, R. Ali, S. M. Derayea, RSC Adv. 2022, 12, 7413. https://doi.org/10.1039/D2RA00120A
S. M. Derayea, R. Ali, A. A. Abu-Hassan, R. Soc. Open Sci. 2021, 8(9), 210922. https://doi.org/10.1098/rsos.210922
M. A. Omar, A. B. Ahmed, N. S. Abdelwahab, M. M. Abdelrahman, S. M. Derayea, Spectrochim. Acta a Mol. Biomol. Spectrosc. 2020, 236, 118337. https://doi.org/10.1016/j.saa.2020.118337
M. A. Abdel-Lateef, A. Almahri, S. M. Derayea, E. Samir, Rev. Anal. Chem. 2020, 39(1), 222. https://doi.org/10.1515/revac-2020-0120
W. A. Al-Onazi, M. A. Abdel-Lateef, Spectrochim. Acta a Mol. Biomol. Spectrosc. 2022, 264, 120258. https://doi.org/10.1016/j.saa.2021.120258
M. Pesez, J. Bartos, Analys. Organ. Compou. Drugs, Dekker, M. Dekker, New York 1974.
C. Mongay, Ann. Chim. 1974, 64, 409.
C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, R. Grant, J. Chromatogr., B 2003, 785, 263. https://doi.org/10.1016/S1570-0232(02)00914-5
U. Neckel, C. Joukhadar, M. Frossard, W. Jäger, M. Müller, B. X. Mayer, Anal. Chim. Acta 2002, 463, 199. https://doi.org/10.1016/S0003-2670(02)00429-4
Y. Jia, J. Shen, H. Xie, D. Liang, J. Zhang, Y. Wang, L. Qiang, Chromatographia 2012, 75(9-10), 527. https://doi.org/10.1007/s10337-012-2217-5
J. Macek, J. Klima, P. Ptáček, J. Chromatogr., B 2006, 832, 169. https://doi.org/10.1016/j.jchromb.2005.12.035
M. A. Abdel-Lateef, M. A. Omar, R. Ali, S. M. Derayea, Spectrochim. Acta a Mol. Biomol. Spectrosc. 2019, 206, 57. https://doi.org/10.1016/j.saa.2018.07.101
P. Job, Ann. Chim. 1928, 9, 113.
J. Anglister, I. Steinberg, J. Chem. Phys. 1983, 78(9), 5358. https://doi.org/10.1063/1.445489
Y. Huang, J. Yang, J. Cheng, Y. Zhang, H. Yuan, Spectrochim. Acta a 2019, 213, 104. https://doi.org/10.1016/j.saa.2019.01.022
W. Zhang, C. Ma, Z. Su, Y. Bai, Mar. Drugs 2016, 14, 1. https://doi.org/10.3390/md14010011
L. O. Usoltseva, T. O. Samarina, S. S. Abramchuk, A. F. Prokhorova, M. K. Beklemishev, Luminescence 2016, 179, 438. https://doi.org/10.1016/j.jlumin.2016.07.020
J. Yang, E. Wang, S. Zhou, Q. Yang, Talanta 2015, 134, 754. https://doi.org/10.1016/j.talanta.2014.12.030
F. Tian, W. Huang, J. Yang, Q. Li, Spectrochim. Acta a 2014, 126, 135. https://doi.org/10.1016/j.saa.2014.01.126
Z. Jiang, Y. Fan, M. Chen, A. Liang, X. Liao, G. Wen, X. Shen, X. He, H. Pan, H. Jiang, Anal. Chem. 2009, 81(13), 5439. https://doi.org/10.1021/ac900590g
C. Y. Kang, D. L. Xi, Y.-Y. Chen, Z. L. Jiang, Talanta 2008, 74, 867. https://doi.org/10.1016/j.talanta.2007.07.032
F. Cui, L. Wang, Y. Cui, J Pharmaceut. Biomed. 2007, 43(3), 1033. https://doi.org/10.1016/j.jpba.2006.10.003
S.-P. Liu, L. Fan, X.-L. Hu, L. I. U. Z.-F, L. I. S, Anal. Sci. 2006, 22(6), 819. https://doi.org/10.2116/analsci.22.819
N. A. Vodolazkaya, Y. A. Gurina, N. V. Salamanova, N. O. Mchedlov-Petrossyan, J. Mol. Liq. 2009, 145(3), 188. https://doi.org/10.1016/j.molliq.2008.11.007
L. Yu, Z. Liu, X. Hu, L. Kong, S. Liu, Microchim. Acta 2010, 169(3-4), 375. https://doi.org/10.1007/s00604-010-0364-7
J. Wang, Z. Liu, J. Liu, S. Liu, W. Shen, Spectrochim. Acta a 2008, 69(3), 956. https://doi.org/10.1016/j.saa.2007.05.057
C. Li, S. Liu, Z. Liu, X. Hu, J. Fluoresc. 2011, 21, 723. https://doi.org/10.1007/s10895-010-0762-6
J. Inczédy, Analytical applications of complex equilibria, Wiley, New York 1976.
I.H.T. Guideline, Journal 2005, 1, 5.
A. I. Nichols, K. Focht, Q. Jiang, S. H. Preskorn, C. P. Kane, Clin. Drug Investig. 2011, 31, 155. https://doi.org/10.2165/11586630-000000000-00000