Clinical, Brain, and Multilevel Clustering in Early Psychosis and Affective Stages.
Journal
JAMA psychiatry
ISSN: 2168-6238
Titre abrégé: JAMA Psychiatry
Pays: United States
ID NLM: 101589550
Informations de publication
Date de publication:
01 07 2022
01 07 2022
Historique:
pubmed:
19
5
2022
medline:
9
7
2022
entrez:
18
5
2022
Statut:
ppublish
Résumé
Approaches are needed to stratify individuals in early psychosis stages beyond positive symptom severity to investigate specificity related to affective and normative variation and to validate solutions with premorbid, longitudinal, and genetic risk measures. To use machine learning techniques to cluster, compare, and combine subgroup solutions using clinical and brain structural imaging data from early psychosis and depression stages. A multisite, naturalistic, longitudinal cohort study (10 sites in 5 European countries; including major follow-up intervals at 9 and 18 months) with a referred patient sample of those with clinical high risk for psychosis (CHR-P), recent-onset psychosis (ROP), recent-onset depression (ROD), and healthy controls were recruited between February 1, 2014, to July 1, 2019. Data were analyzed between January 2020 and January 2022. A nonnegative matrix factorization technique separately decomposed clinical (287 variables) and parcellated brain structural volume (204 gray, white, and cerebrospinal fluid regions) data across CHR-P, ROP, ROD, and healthy controls study groups. Stability criteria determined cluster number using nested cross-validation. Validation targets were compared across subgroup solutions (premorbid, longitudinal, and schizophrenia polygenic risk scores). Multiclass supervised machine learning produced a transferable solution to the validation sample. There were a total of 749 individuals in the discovery group and 610 individuals in the validation group. Individuals included those with CHR-P (n = 287), ROP (n = 323), ROD (n = 285), and healthy controls (n = 464), The mean (SD) age was 25.1 (5.9) years, and 702 (51.7%) were female. A clinical 4-dimensional solution separated individuals based on positive symptoms, negative symptoms, depression, and functioning, demonstrating associations with all validation targets. Brain clustering revealed a subgroup with distributed brain volume reductions associated with negative symptoms, reduced performance IQ, and increased schizophrenia polygenic risk scores. Multilevel results distinguished between normative and illness-related brain differences. Subgroup results were largely validated in the external sample. The results of this longitudinal cohort study provide stratifications beyond the expression of positive symptoms that cut across illness stages and diagnoses. Clinical results suggest the importance of negative symptoms, depression, and functioning. Brain results suggest substantial overlap across illness stages and normative variation, which may highlight a vulnerability signature independent from specific presentations. Premorbid, longitudinal, and genetic risk validation suggested clinical importance of the subgroups to preventive treatments.
Identifiants
pubmed: 35583903
pii: 2792519
doi: 10.1001/jamapsychiatry.2022.1163
pmc: PMC9118078
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
677-689Subventions
Organisme : NIMH NIH HHS
ID : R01 MH112070
Pays : United States
Organisme : NIH HHS
ID : S10 OD023495
Pays : United States
Investigateurs
Amatya Mackintosh
(A)
Nathalie Kaiser
(N)
Thorsten Lichtenstein
(T)
Mauro Seves
(M)
Katie Chisholm
(K)
Renate Reniers
(R)
Alexandra Stainton
(A)
Tiina From
(T)
Markus Heinimaa
(M)
Tuula Ilonen
(T)
Päivi Jalo
(P)
Heikki Laurikainen
(H)
Lauri Tuominen
(L)
Sinikka Luutonen
(S)
Janina Paju
(J)
Maria Tikka
(M)
Reetta-Liina Armio Säilä
(RL)
Anna Toivonen
(A)
Maija Walta
(M)
Franco Fabbro
(F)
Matteo Balestrieri
(M)
Carolina Bonivento
(C)
Marco Garzitto
(M)
Giuseppe Cabras
(G)
Sara Piccin
(S)
Umberto Castellani
(U)
Marcella Bellani
(M)
Marta Maieron
(M)
Rossano Girometti
(R)
Chiara Zuiani
(C)
Stan Skafidas
(S)
Dennis Velakoulis
(D)
Ian Everall
(I)
Antonia Merritt
(A)
Michael Jovicevic
(M)
Manuel Plicht
(M)
Dirk Bequé
(D)
Ana Beatriz Solana Sánchez
(AB)
Nicolas Hehn
(N)
Katrin Herrmann
(K)
Michael X Burke
(MX)
Brice Fernandez
(B)
Carlo Altamura
(C)
Mario Rango
(M)
Adele Ferro
(A)
Marika Belleri
(M)
Eleonora Maggioni
(E)
Letizia Squarcina
(L)
Marta Re
(M)
Giuseppe Delvecchio
(G)
Anna Meneghelli
(A)
Emiliano Monzani
(E)
Roberto Sassi
(R)
Maurizio Sberna
(M)
Luciana Gennari
(L)
Patrizia Torremante
(P)
Marian Surmann
(M)
Udo Dannlowski
(U)
Olga Bienek
(O)
Giuseppe Blasi
(G)
Giulio Pergola
(G)
Tiziana Quarto
(T)
Ileana Andriola
(I)
Raffaella Romano
(R)
Barbara Gelao
(B)
Leonardo Fazio
(L)
Alexandra Korda
(A)
Henrik Rohner
(H)
Matthias Mann
(M)
Phillip Geyer
(P)
Peter Treit
(P)
Johannes Müller
(J)
Richard Frackowiak
(R)
Danuta Wasserman
(D)
Wolfgang Maier
(W)
Elisabeth Binder
(E)
Christiane Woopen
(C)
Tade Matthias Spranger
(TM)
Karl-Heinz Möhrmann
(KH)
Références
Schizophr Res. 2015 Feb;161(2-3):169-76
pubmed: 25497442
Nature. 2014 Sep 11;513(7517):202-9
pubmed: 25079317
Schizophr Bull. 2017 Jul 1;43(4):900-906
pubmed: 28008071
Nat Neurosci. 2019 Oct;22(10):1617-1623
pubmed: 31551603
Nat Med. 2017 Jan;23(1):28-38
pubmed: 27918562
Transl Psychiatry. 2019 Jan 17;9(1):20
pubmed: 30655509
N Engl J Med. 2015 Jun 25;372(26):2481-98
pubmed: 26061751
Biol Psychiatry. 2018 Nov 1;84(9):684-691
pubmed: 29807621
Am J Psychiatry. 2018 Sep 1;175(9):831-844
pubmed: 29621902
Qual Life Res. 2022 Jun;31(6):1807-1817
pubmed: 34661805
J Affect Disord. 2016 Oct;203:101-110
pubmed: 27285723
Biol Psychiatry. 2019 Mar 1;85(5):379-388
pubmed: 30612699
Cell. 2014 Aug 14;158(4):929-944
pubmed: 25109877
Acta Psychiatr Scand. 2010 Sep;122(3):211-8
pubmed: 19922525
Psychol Med. 2014 Oct;44(13):2713-26
pubmed: 25066181
JAMA Psychiatry. 2021 Feb 1;78(2):195-209
pubmed: 33263726
Cell Rep. 2016 Mar 15;14(10):2476-89
pubmed: 26947078
Am J Psychiatry. 2019 Dec 1;176(12):1000-1009
pubmed: 31230463
Schizophr Bull. 2003;29(4):703-15
pubmed: 14989408
JAMA Psychiatry. 2018 Jan 1;75(1):28-35
pubmed: 29167880
Prog Neuropsychopharmacol Biol Psychiatry. 2020 Apr 20;99:109862
pubmed: 31927053
Biol Psychiatry. 2020 Jul 1;88(1):51-62
pubmed: 32087950
Am J Psychiatry. 2020 Feb 1;177(2):155-163
pubmed: 31711302
Schizophr Bull. 2017 Mar 1;43(2):240-244
pubmed: 27421793
World Psychiatry. 2018 Jun;17(2):121-122
pubmed: 29856539
JAMA Psychiatry. 2015 Apr;72(4):305-15
pubmed: 25651064
Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jun 8;100:109907
pubmed: 32113850
Schizophr Bull. 2021 Mar 16;47(2):386-394
pubmed: 32909606
Eur Neuropsychopharmacol. 2021 Jun;47:112-129
pubmed: 33531261
Prog Neuropsychopharmacol Biol Psychiatry. 2016 Jan 4;64:79-86
pubmed: 26216861
Psychol Med. 2013 Nov;43(11):2311-25
pubmed: 23442767
JAMA Psychiatry. 2020 Mar 1;77(3):311-320
pubmed: 31746950
Nat Med. 2016 Nov;22(11):1248-1255
pubmed: 27783066
J Clin Psychol. 1984 Nov;40(6):1365-7
pubmed: 6511949
Arch Gen Psychiatry. 1982 Jul;39(7):784-8
pubmed: 7165477
Arch Gen Psychiatry. 2011 Jan;68(1):10-1
pubmed: 21199961
Brain. 2020 Mar 1;143(3):1027-1038
pubmed: 32103250
Schizophr Bull. 2014 Jan;40(1):120-31
pubmed: 23180756
Psychiatry Res. 2018 Dec;270:1-12
pubmed: 30243126
Psychol Med. 2020 Apr;50(6):920-926
pubmed: 32234093
Am J Psychiatry. 2015 Mar 1;172(3):249-58
pubmed: 25727537
JAMA Psychiatry. 2020 May 1;77(5):523-533
pubmed: 32049274
World Psychiatry. 2008 Oct;7(3):148-56
pubmed: 18836582
Br J Psychiatry. 2015 Sep;207(3):198-206
pubmed: 26329563
Schizophr Bull. 2021 Jan 23;47(1):54-63
pubmed: 32955097
Schizophr Bull. 2018 Aug 20;44(5):1060-1069
pubmed: 29529270
Neuroimage Clin. 2019;22:101796
pubmed: 30935858
World Psychiatry. 2021 Jun;20(2):226-227
pubmed: 34002528
Schizophr Bull. 1982;8(3):470-84
pubmed: 7134891
BMC Med. 2013 May 14;11:126
pubmed: 23672542
Schizophr Bull. 1988;14(4):645-52
pubmed: 3064288
Science. 2018 Feb 9;359(6376):693-697
pubmed: 29439242
Mol Psychiatry. 2012 Dec;17(12):1174-9
pubmed: 22869033
Schizophr Res. 2015 Dec;169(1-3):209-213
pubmed: 26589390
Am J Psychiatry. 2021 Feb 1;178(2):174-182
pubmed: 32600153
World Psychiatry. 2021 Jun;20(2):231-232
pubmed: 34002515
Schizophr Bull. 2017 Jan;43(1):64-74
pubmed: 28053131
Transl Psychiatry. 2020 Dec 8;10(1):422
pubmed: 33293510
World Psychiatry. 2021 Jun;20(2):200-221
pubmed: 34002494
Schizophr Res. 2019 Dec;214:43-50
pubmed: 29274735
Biol Psychiatry. 2020 Dec 1;88(11):829-842
pubmed: 32782139
Schizophr Bull. 2020 Apr 10;46(3):623-632
pubmed: 31901940
JAMA Psychiatry. 2017 Nov 1;74(11):1104-1111
pubmed: 28973084
Schizophr Bull. 2018 Feb 15;44(2):286-296
pubmed: 29036587
Neuropsychopharmacology. 2021 Feb;46(3):643-653
pubmed: 33168947
Schizophr Bull. 2022 Jan 21;48(1):241-250
pubmed: 34508358
NPJ Schizophr. 2020 Oct 5;6(1):27
pubmed: 33020486
World Psychiatry. 2021 Jun;20(2):224-225
pubmed: 34002526
Psychiatry Res. 2006 Feb 28;141(2):185-91
pubmed: 16499976
Biol Psychiatry. 2011 Oct 1;70(7):619-25
pubmed: 21762875
Child Psychiatry Hum Dev. 2022 Aug;53(4):737-753
pubmed: 33826029
World Psychiatry. 2021 Jun;20(2):223-224
pubmed: 34002518
Transl Psychiatry. 2016 Aug 09;6(8):e868
pubmed: 27505231
Early Interv Psychiatry. 2019 Dec;13(6):1431-1438
pubmed: 30644165
Aust N Z J Psychiatry. 2020 May;54(5):482-495
pubmed: 31486343