Minocycline Attenuates Microglia/Macrophage Phagocytic Activity and Inhibits SAH-Induced Neuronal Cell Death and Inflammation.


Journal

Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086

Informations de publication

Date de publication:
10 2022
Historique:
received: 12 08 2021
accepted: 05 04 2022
pubmed: 19 5 2022
medline: 1 10 2022
entrez: 18 5 2022
Statut: ppublish

Résumé

Neuroprotective treatment strategies aiming at interfering with either inflammation or cell death indicate the importance of these mechanisms in the development of brain injury after subarachnoid hemorrhage (SAH). This study was undertaken to evaluate the influence of minocycline on microglia/macrophage cell activity and its neuroprotective and anti-inflammatory impact 14 days after aneurismal SAH in mice. Endovascular filament perforation was used to induce SAH in mice. SAH + vehicle-operated mice were used as controls for SAH vehicle-treated mice and SAH + minocycline-treated mice. The drug administration started 4 h after SAH induction and was daily repeated until day 7 post SAH and continued until day 14 every second day. Brain cryosections were immunolabeled for Iba1 to detect microglia/macrophages and NeuN to visualize neurons. Phagocytosis assay was performed to determine the microglia/macrophage activity status. Apoptotic cells were stained using terminal deoxyuridine triphosphate nick end labeling. Real-time quantitative polymerase chain reaction was used to estimate cytokine gene expression. We observed a significantly reduced phagocytic activity of microglia/macrophages accompanied by a lowered spatial interaction with neurons and reduced neuronal apoptosis achieved by minocycline administration after SAH. Moreover, the SAH-induced overexpression of pro-inflammatory cytokines and neuronal cell death was markedly attenuated by the compound. Minocycline treatment may be implicated as a therapeutic approach with long-term benefits in the management of secondary brain injury after SAH in a clinically relevant time window.

Sections du résumé

BACKGROUND
Neuroprotective treatment strategies aiming at interfering with either inflammation or cell death indicate the importance of these mechanisms in the development of brain injury after subarachnoid hemorrhage (SAH). This study was undertaken to evaluate the influence of minocycline on microglia/macrophage cell activity and its neuroprotective and anti-inflammatory impact 14 days after aneurismal SAH in mice.
METHODS
Endovascular filament perforation was used to induce SAH in mice. SAH + vehicle-operated mice were used as controls for SAH vehicle-treated mice and SAH + minocycline-treated mice. The drug administration started 4 h after SAH induction and was daily repeated until day 7 post SAH and continued until day 14 every second day. Brain cryosections were immunolabeled for Iba1 to detect microglia/macrophages and NeuN to visualize neurons. Phagocytosis assay was performed to determine the microglia/macrophage activity status. Apoptotic cells were stained using terminal deoxyuridine triphosphate nick end labeling. Real-time quantitative polymerase chain reaction was used to estimate cytokine gene expression.
RESULTS
We observed a significantly reduced phagocytic activity of microglia/macrophages accompanied by a lowered spatial interaction with neurons and reduced neuronal apoptosis achieved by minocycline administration after SAH. Moreover, the SAH-induced overexpression of pro-inflammatory cytokines and neuronal cell death was markedly attenuated by the compound.
CONCLUSIONS
Minocycline treatment may be implicated as a therapeutic approach with long-term benefits in the management of secondary brain injury after SAH in a clinically relevant time window.

Identifiants

pubmed: 35585424
doi: 10.1007/s12028-022-01511-5
pii: 10.1007/s12028-022-01511-5
pmc: PMC9519684
doi:

Substances chimiques

Anti-Inflammatory Agents 0
Cytokines 0
Neuroprotective Agents 0
Minocycline FYY3R43WGO

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

410-423

Informations de copyright

© 2022. The Author(s).

Références

Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39(11):3015–21.
pubmed: 18688013 doi: 10.1161/STROKEAHA.108.519942
Macdonald RL, Higashida RT, Keller E, et al. Preventing vasospasm improves outcome after aneurysmal subarachnoid hemorrhage: rationale and design of CONSCIOUS-2 and CONSCIOUS-3 trials. Neurocrit Care. 2010;13(3):416–24.
pubmed: 20838933 doi: 10.1007/s12028-010-9433-3
Alaraj A, Charbel FT, Amin-Hanjani S. Peri-operative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage. Neurol Res. 2009;31(6):651–9.
pubmed: 19133166 doi: 10.1179/174313209X382395
Wilkins RH, Alexander JA, Odom GL. Intracranial arterial spasm: a clinical analysis. J Neurosurg. 1968;29(2):121–34.
pubmed: 5673310 doi: 10.3171/jns.1968.29.2.0121
Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43(1):27–40.
pubmed: 21161614 doi: 10.1007/s12035-010-8155-z
Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28(6):252–6.
pubmed: 17466386 doi: 10.1016/j.tips.2007.04.002
Pluta RM, Hansen-Schwartz J, Dreier J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8.
pubmed: 19298755 pmcid: 2706525 doi: 10.1179/174313209X393564
Schneider UC, Davids AM, Brandenburg S, et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol. 2015;130(2):215–31.
pubmed: 25956409 doi: 10.1007/s00401-015-1440-1
Heppner FL, Greter M, Marino D, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005;11(2):146–52.
pubmed: 15665833 doi: 10.1038/nm1177
Sarrafzadeh A, Copin JC, Bengualid DJ, et al. Matrix metalloproteinase-9 concentration in the cerebral extracellular fluid of patients during the acute phase of aneurysmal subarachnoid hemorrhage. Neurol Res. 2012;34(5):455–61.
pubmed: 22449315 doi: 10.1179/1743132812Y.0000000018
Fassbender K, Hodapp B, Rossol S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psych. 2001;70(4):534–7.
doi: 10.1136/jnnp.70.4.534
Schneider UC, Schiffler J, Hakiy N, Horn P, Vajkoczy P. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro. J Neuroinflammation. 2012;9:28.
pubmed: 22316109 pmcid: 3305442 doi: 10.1186/1742-2094-9-28
Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64(3):546–53 (discussion 53-4).
pubmed: 19240618 doi: 10.1227/01.NEU.0000337579.05110.F4
Atangana E, Schneider UC, Blecharz K, et al. Intravascular inflammation triggers intracerebral activated microglia and contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Transl Stroke Res. 2017;8(2):144–56.
pubmed: 27477569 doi: 10.1007/s12975-016-0485-3
Rifkin BR, Vernillo AT, Golub LM, Ramamurthy NS. Modulation of bone resorption by tetracyclines. Ann N Y Acad Sci. 1994;732:165–80.
pubmed: 7978789 doi: 10.1111/j.1749-6632.1994.tb24733.x
Amin AR, Attur MG, Thakker GD, et al. A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A. 1996;93(24):14014–9.
pubmed: 8943052 pmcid: 19486 doi: 10.1073/pnas.93.24.14014
Wang Z, Meng CJ, Shen XM, et al. Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood-brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci. 2012;48(1):273–80.
pubmed: 22528459 doi: 10.1007/s12031-012-9769-6
Pi R, Li W, Lee NT, et al. Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. J Neurochem. 2004;91(5):1219–30.
pubmed: 15569265 doi: 10.1111/j.1471-4159.2004.02796.x
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res. 2017;12(5):702–13.
pubmed: 28616020 pmcid: 5461601 doi: 10.4103/1673-5374.206633
Suk K. Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci Lett. 2004;366(2):167–71.
pubmed: 15276240 doi: 10.1016/j.neulet.2004.05.038
Guo ZD, Wu HT, Sun XC, Zhang XD, Zhang JH. Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110(Pt 1):71–4.
pubmed: 21116918
Sherchan P, Lekic T, Suzuki H, et al. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma. 2011;28(12):2503–12.
pubmed: 22013966 pmcid: 3235340 doi: 10.1089/neu.2011.1864
Li J, Chen J, Mo H, et al. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol. 2016;53(4):2668–78.
pubmed: 26143258 doi: 10.1007/s12035-015-9318-8
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.
pubmed: 8843599 doi: 10.1016/0166-2236(96)10049-7
McGeer EG, McGeer PL. Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des. 1999;5(10):821–36.
pubmed: 10526088
Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38(3):357–66.
pubmed: 7668820 doi: 10.1002/ana.410380304
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.
pubmed: 17965659 doi: 10.1038/nn1997
Szalay G, Martinecz B, Lénárt N, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499.
pubmed: 27139776 pmcid: 4857403 doi: 10.1038/ncomms11499
van Rossum D, Hanisch UK. Microglia. Metab Brain Dis. 2004;19(3–4):393–411.
pubmed: 15554430 doi: 10.1023/B:MEBR.0000043984.73063.d8
de Beer MC, Zhao Z, Webb NR, van der Westhuyzen DR, de Villiers WJ. Lack of a direct role for macrosialin in oxidized LDL metabolism. J Lipid Res. 2003;44(4):674–85.
pubmed: 12562841 doi: 10.1194/jlr.M200444-JLR200
Huang CY, Chen YL, Li AH, Lu JC, Wang HL. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons. J Neuroinflammation. 2014;11:7.
pubmed: 24405660 pmcid: 3896825 doi: 10.1186/1742-2094-11-7
Zhao P, Waxman SG, Hains BC. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci. 2007;27(9):2357–68.
pubmed: 17329433 pmcid: 6673468 doi: 10.1523/JNEUROSCI.0138-07.2007
Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115(1–2):71–83.
pubmed: 15836971 doi: 10.1016/j.pain.2005.02.009
Yrjänheikki J, Tikka T, Keinänen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96(23):13496–500.
pubmed: 10557349 pmcid: 23976 doi: 10.1073/pnas.96.23.13496
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.
pubmed: 21738161 pmcid: 3137275 doi: 10.1038/nm.2399
Patel RN, Attur MG, Dave MN, et al. A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2-mediated prostaglandin E2 production. J Immunol. 1999;163(6):3459–67.
pubmed: 10477618
Gong K, Zou X, Fuchs PN, Lin Q. Minocycline inhibits neurogenic inflammation by blocking the effects of tumor necrosis factor-α. Clin Exp Pharmacol Physiol. 2015;42:940–9.
pubmed: 26175075 doi: 10.1111/1440-1681.12444
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96(Pt A):70–82.
pubmed: 25445483 doi: 10.1016/j.neuropharm.2014.10.027
Pugazhenthi S, Zhang Y, Bouchard R, Mahaffey G. Induction of an inflammatory loop by interleukin-1β and tumor necrosis factor-α involves NF-kB and STAT-1 in differentiated human neuroprogenitor cells. PLoS ONE. 2013;8(7): e69585.
pubmed: 23922745 pmcid: 3726669 doi: 10.1371/journal.pone.0069585
Snow WM, Stoesz BM, Kelly DM, Albensi BC. Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol Neurobiol. 2014;49(2):757–70.
pubmed: 24122352 doi: 10.1007/s12035-013-8555-y
Liaury K, Miyaoka T, Tsumori T, et al. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation. 2012;9:56.
pubmed: 22424389 pmcid: 3334707 doi: 10.1186/1742-2094-9-56
Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21(8):2580–8.
pubmed: 11306611 pmcid: 6762519 doi: 10.1523/JNEUROSCI.21-08-02580.2001
Gomes JA, Selim M, Cotleur A, et al. Brain iron metabolism and brain injury following subarachnoid hemorrhage: iCeFISH-pilot (CSF iron in SAH). Neurocrit Care. 2014;21(2):285–93.
pubmed: 24710655 pmcid: 4628549 doi: 10.1007/s12028-014-9977-8
Vellimana AK, Zhou ML, Singh I, et al. Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase-9 inhibition. Ann Clin Transl Neurol. 2017;4(12):865–76.
pubmed: 29296615 pmcid: 5740245 doi: 10.1002/acn3.492
Li J, McCullough LD. Sex differences in minocycline-induced neuroprotection after experimental stroke. J Cereb Blood Flow Metab. 2009;29(4):670–4.
pubmed: 19190654 doi: 10.1038/jcbfm.2009.3

Auteurs

Kinga G Blecharz-Lang (KG)

Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. kinga.blecharz.lang@gmail.com.

Victor Patsouris (V)

Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Melina Nieminen-Kelhä (M)

Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Stefanie Seiffert (S)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Ulf C Schneider (UC)

Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Peter Vajkoczy (P)

Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH