Synaptophysin is a selective marker for axons in human cutaneous end organ complexes.
Human
Immunohistochemistry
Meisner corpuscles
Merkel cell- neurite complexes
PIEZO2
Pacinian corpuscles
Synaptophysin
Journal
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft
ISSN: 1618-0402
Titre abrégé: Ann Anat
Pays: Germany
ID NLM: 100963897
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
10
01
2022
revised:
04
04
2022
accepted:
24
04
2022
pubmed:
20
5
2022
medline:
22
6
2022
entrez:
19
5
2022
Statut:
ppublish
Résumé
Small clear synaptic-like vesicles fill axon terminals of mechanoreceptors. Their functional significance is controversial and probably includes release of neurotransmitters from afferent axon terminals. Synaptophysin, a major protein of the synaptic vesicle membrane, is present in presynaptic endings of the central and peripheral nervous systems. It is also expressed in mechanosensory neurons which extend into skin forming sensory corpuscles. Nevertheless, synaptophysin occurrence in these structures has never been investigated. Here we used immunohistochemistry to detect synaptophysin in adult human dorsal root ganglia, cutaneous Meissner and Pacinian corpuscles and Merkel cell-neurite complexes from foetal to elderly period. Moreover, we analyzed whether synaptophysin co-localizes with the mechano-gated protein PIEZO2. Synaptophysin immunoreactivity was observed in primary sensory neurons (36 ± 6%) covering the entire soma size ranges. Axons of Meissner's and Pacinian corpuscles were positive for synaptophysin from 36 and 12 weeks of estimated gestational age respectively, to 72 years old. Synaptophysin was also detected in Merkel cells (from 14 weeks of estimated gestational age to old age). Additionally in adult skin, synaptophysin and PIEZO2 co-localized in the axon of Meissner and Pacinian corpuscles, Merkel cells as well as in some axons of Merkel cell-neurite complexes. Present results demonstrate that a subpopulation of primary sensory neurons and their axon terminals forming cutaneous sensory corpuscles contain synaptophysin, a typical presynaptic vesicle protein. Although the functional relevance of these findings is unknown it might be related to neurotransmission mechanisms linked to mechanotransduction.
Sections du résumé
BACKGROUND
BACKGROUND
Small clear synaptic-like vesicles fill axon terminals of mechanoreceptors. Their functional significance is controversial and probably includes release of neurotransmitters from afferent axon terminals. Synaptophysin, a major protein of the synaptic vesicle membrane, is present in presynaptic endings of the central and peripheral nervous systems. It is also expressed in mechanosensory neurons which extend into skin forming sensory corpuscles. Nevertheless, synaptophysin occurrence in these structures has never been investigated.
METHODS
METHODS
Here we used immunohistochemistry to detect synaptophysin in adult human dorsal root ganglia, cutaneous Meissner and Pacinian corpuscles and Merkel cell-neurite complexes from foetal to elderly period. Moreover, we analyzed whether synaptophysin co-localizes with the mechano-gated protein PIEZO2.
RESULTS
RESULTS
Synaptophysin immunoreactivity was observed in primary sensory neurons (36 ± 6%) covering the entire soma size ranges. Axons of Meissner's and Pacinian corpuscles were positive for synaptophysin from 36 and 12 weeks of estimated gestational age respectively, to 72 years old. Synaptophysin was also detected in Merkel cells (from 14 weeks of estimated gestational age to old age). Additionally in adult skin, synaptophysin and PIEZO2 co-localized in the axon of Meissner and Pacinian corpuscles, Merkel cells as well as in some axons of Merkel cell-neurite complexes.
CONCLUSION
CONCLUSIONS
Present results demonstrate that a subpopulation of primary sensory neurons and their axon terminals forming cutaneous sensory corpuscles contain synaptophysin, a typical presynaptic vesicle protein. Although the functional relevance of these findings is unknown it might be related to neurotransmission mechanisms linked to mechanotransduction.
Identifiants
pubmed: 35588932
pii: S0940-9602(22)00070-X
doi: 10.1016/j.aanat.2022.151955
pii:
doi:
Substances chimiques
Biomarkers
0
Synaptophysin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
151955Informations de copyright
Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of interest The authors declare that there are no conflicts of interest regarding the publication of this paper.