Nitroimidazoles Part 10. Synthesis, crystal structure, molecular docking, and anticancer evaluation of 4-nitroimidazole derivatives combined with piperazine moiety.
X-ray structures
antitumor activity
imidazoles
piprazines
synthesis
Journal
Zeitschrift fur Naturforschung. C, Journal of biosciences
ISSN: 1865-7125
Titre abrégé: Z Naturforsch C J Biosci
Pays: Germany
ID NLM: 8912155
Informations de publication
Date de publication:
28 Mar 2023
28 Mar 2023
Historique:
received:
03
02
2022
accepted:
30
04
2022
pubmed:
20
5
2022
medline:
11
3
2023
entrez:
19
5
2022
Statut:
epublish
Résumé
Piperazine-tagged imidazole derivatives
Identifiants
pubmed: 35589618
pii: znc-2022-0023
doi: 10.1515/znc-2022-0023
doi:
Substances chimiques
4-nitroimidazole
Y8U32AZ5O7
Piperazine
1RTM4PAL0V
Nitroimidazoles
0
Antineoplastic Agents
0
Antiprotozoal Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
93-103Informations de copyright
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Références
Khabnadideh, S, Rezaci, Z, Khalafi, NA, Motazedian, MH, Eskandari, M. Synthesis of metronidazole derivatives as antigiardiasis agents. DARU J Pharm Sci 2007;15:17–20.
Leitsch, D. A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology 2019;146:1167–78. https://doi.org/10.1017/s0031182017002025 .
doi: 10.1017/s0031182017002025
Stettendorf, S. Bifonazole – a synopsis of clinical trials worldwide. Dermatology 1984;169:69–76. https://doi.org/10.1159/000249642 .
doi: 10.1159/000249642
Hage, SE, Lajoie, B, Feuillolay, C, Roques, C, Baziard, G. Synthesis, antibacterial and antifungal activities of bifonazole derivatives. Arch Pharm Chem Life Sci 2011;11:402–10. https://doi.org/10.1002/ardp.201000304 .
doi: 10.1002/ardp.201000304
Josephy, PD, Palcic, B, Skarsgard, LD. In vitro metabolism of misonidazole. Br J Cancer 1981;43:443–50. https://doi.org/10.1038/bjc.1981.65 .
doi: 10.1038/bjc.1981.65
Ceruelos, AH, Romero-Quezada, LC, Ledezma, JR, Contreras, LL. Therapeutic uses of metronidazole and its side effects: an update. Eur Rev Med Pharmacol Sci 2019;23:397–401.
Che, H, Tuyen, TN, Kim, HP, Park, H. 1,5-Diarylimidazoles with strong inhibitory activity against COX-2 catalyzed PGE2 production from LPS-induced RAW 264.7 cells. Bioorg Med Chem Lett 2010;20:4035–7. https://doi.org/10.1016/j.bmcl.2010.05.092 .
doi: 10.1016/j.bmcl.2010.05.092
Almansa, C, Alfón, J, de Arriba, AF, Cavalcanti, FL, Escamilla, I, Gómez, LA, et al.. Synthesis and structure−activity relationship of a new series of COX-2 selective inhibitors: 1,5-diarylimidazoles. J Med Chem 2003;46:3463–75. https://doi.org/10.1021/jm030765s .
doi: 10.1021/jm030765s
Ren, JS, Nichols, C, Bird, LE, Fujiwara, T, Sugimoto, H, Stuart, DI, et al.. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J Biol Chem 2000;275:14316–20. https://doi.org/10.1074/jbc.275.19.14316 .
doi: 10.1074/jbc.275.19.14316
Mearin, F, Guarner, F, Verdú, E. Probióticos y aparato digestivo. Evidencias actuales. Gastroenterol Hepatol 2009;32:1–14. https://doi.org/10.1016/s0210-5705(09)71003-9 .
doi: 10.1016/s0210-5705(09)71003-9
Kitbunnadaj, R, Zuiderveld, OP, Christophe, B, Hulscher, S, Menge, WM, Gelens, E, et al.. Identification of 4-(1H-Imidazol-4(5)-ylmethyl)pyridine (Immethridine) as a novel, potent, and highly selective histamine H3 receptor agonist. J Med Chem 2004;47:2414–7. https://doi.org/10.1021/jm049932u .
doi: 10.1021/jm049932u
Varaschin, RK, Rosenberg, MJ, Hamilton, DA, Savage, DD. Differential effects of the histamine H3 receptor agonist Methimepip on dentate granule cell excitability, paired-pulse plasticity and long-term potentiation in prenatal alcohol-exposed rats. Alcohol Clin Exp Res 2014;38:1902–11. https://doi.org/10.1111/acer.12430 .
doi: 10.1111/acer.12430
Senn‐Bilfinger, J, Sturm, E. The development of a new proton-pump inhibitor: the case history of Pantoprazole. In: Fischer, J, Ganellin, CR, editors. Analogue-based drug discovery . Weinheim: Wiley-VCH; 2006:115–36 pp. chapter 6.
Al-Masoudi, NA, Al-Soud, YA, Kalogerakis, A, Pannecouque, C, De Clercq, E. Nitroimidazoles, part 2. Chem Biodivers 2006;3:515–26. https://doi.org/10.1002/cbdv.200690055 .
doi: 10.1002/cbdv.200690055
Al-Masoudi, NA, Al-Soud, YA, Clercq, ED, Pannecouque, C. Nitroimidazoles part 6. Synthesis, structure and in vitro anti-HIV activity of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Antiviral Chem Chemother 2007;18:191–200. https://doi.org/10.1177/095632020701800403 .
doi: 10.1177/095632020701800403
Al-Soud, YA, Al-Masoudi, NA, Hassan, H, Clercq, ED, Pannecouque, C. Nitroimidazoles. V. Synthesis and anti-HIV evaluation of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Acta Pharm 2007;57:379–93. https://doi.org/10.2478/v10007-007-0031-7 .
doi: 10.2478/v10007-007-0031-7
Al-Soud, YA, Al-Sa’doni, H, Amajaour, HA, Al-Masoudi, NA. Nitroimidazoles, part 3. Synthesis and anti-HIV activity of new N-alkyl-4-nitroimidazoles bearing benzothiazole and benzoxazole backbones. Z Naturforsch 2007;62b:523–8. https://doi.org/10.1515/znb-2007-0406 .
doi: 10.1515/znb-2007-0406
Al‐Soud, YA, Al‐Masoudi, NA, Clercq, ED, Paneccoque, C. Nitroimidazoles, part 4: synthesis and anti-HIV activity of new 5-alkylsulfanyl and 5-(4′-arylsulfonyl)piperazinyl-4-nitroimidazole derivatives. Heteroat Chem 2007;18:333–40.
Al-Soud, YA, Al-Masoudi, NA, Al-Suod, HH, Pannecouque, C. Nitroimidazoles part 8. Synthesis and anti-HIV activity of new 4-nitroimidazole derivatives using the Suzuki cross-coupling reaction. Z Naturforsch 2012;67b:925–34. https://doi.org/10.5560/znb.2012-0185 .
doi: 10.5560/znb.2012-0185
Al-Qawasmeh, RA, Young, AH, Huesca, M, Lee, Y. 2,4,5-Trisubstituted imidazoles and their use as anti-microbial agents. USP 7884120 B2, 2011.
Al-Soud, YA, Al-Ahmad, AH, Abu-Qatouseh, L, Shtaiwi, A, Alhelal, KAS, Al-Suod, HH, et al.. Nitroimidazoles part 9. Synthesis, molecular docking, and anticancer evaluations of piperazine-tagged imidazole derivatives. Z Naturforsch 2021;76b:293–302. https://doi.org/10.1515/znb-2020-0200 .
doi: 10.1515/znb-2020-0200
Al-Soud, YA, Alhelal, KAS, Saeed, BA, Abu-Qatouseh, L, Al-Suod, HH, Al-Ahmad, AH, et al.. Synthesis, anticancer activity and molecular docking studies of new 4-nitroimidazole derivatives. Arkivoc 2021:296–309. part viii. https://doi.org/10.24820/ark.5550190.p011.479 .
doi: 10.24820/ark.5550190.p011.479
Abdel-Jalil, RJ, Al-Qawasmeh, RA, Voelter, W, Heeg, P, El-Abadelah, MM, Sabri, SS. Synthesis and properties of some 2,3-disubstituted 6-fluoro-7-(4-methyl-1-piperazinyl)quinoxalines. J Heterocycl Chem 2000;37:1273–5. https://doi.org/10.1002/jhet.5570370541 .
doi: 10.1002/jhet.5570370541
Zheng, H, Weiner, LM, Bar-Am, O, Epsztejn, S, Cabantchik, ZI, Warshawsky, A, et al.. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 2005;13:773–83. https://doi.org/10.1016/j.bmc.2004.10.037 .
doi: 10.1016/j.bmc.2004.10.037
Najafi, M, Shayesteh, MRH, Mortezaee, K, Farhood, B, Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: a systematic review. Life Sci 2020;241:117173. https://doi.org/10.1016/j.lfs.2019.117173 .
doi: 10.1016/j.lfs.2019.117173
Guo, J, Xu, B, Han, Q, Zhou, H, Xia, Y, Gong, C, et al.. Ferroptosis: a novel anti-tumor action for Cisplatin. Cancer Res Treat 2018;50:445–60. https://doi.org/10.4143/crt.2016.572 .
doi: 10.4143/crt.2016.572
Noble, ME, Endicott, JA, Johnson, LN. Protein kinase inhibitors: insights into drug design from structure. Science 2004;303:1800–5. https://doi.org/10.1126/science.1095920 .
doi: 10.1126/science.1095920
Pardo, OE, Castellano, L, Munro, CE, Hu, Y, Mauri, F, Krell, J, et al.. MiR-515-5p controls cancer cell migration through MARK 4 regulation. EMBO Rep 2016;17:570–84. https://doi.org/10.15252/embr.201540970 .
doi: 10.15252/embr.201540970
Rovina, D, Fontana, L, Monti, L, Novielli, C, Panini, N, Maria Sirchia, S, et al.. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur J Cell Biol 2014;93:355–65.
Heidary, A, Emad, AS, Siyuan, S, Liliana, A. MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 2017;18:420–36. https://doi.org/10.15252/embr.201642455 .
doi: 10.15252/embr.201642455
Kemphues, K. PARsing embryonic polarity. Cell 2000;101:345–8. https://doi.org/10.1016/s0092-8674(00)80844-2 .
doi: 10.1016/s0092-8674(00)80844-2
Marx, A, Nugoor, C, Panneerselvam, S, Mandelkow, E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. Faseb J 2010;24:1637–48. https://doi.org/10.1096/fj.09-148064 .
doi: 10.1096/fj.09-148064
Morris, GM, Huey, R, Lindstrom, W, Sanner, MF, Belew, RK, Goodsell, DS, et al.. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256 .
doi: 10.1002/jcc.21256
Dennington, R, Keith, T, Millam, J. GaussView, version 5 . Shawnee Mission, KS: Semichem Inc.; 2009.
Stewart, JJ. Optimization of parameters for semiempirical methods II. Applications. J Comput Chem 1989;10:221–64. https://doi.org/10.1002/jcc.540100209 .
doi: 10.1002/jcc.540100209
Frisch, M, Trucks, G, Schlegel, H, Scuseria, G, Robb, M, Cheeseman, J, et al.. Gaussian 03, revision C. 02 . Wallingford, CT: Gaussian, Inc.; 2004:26 p.
Morris, GM, Goodsell, DS, Halliday, RS, Huey, R, Hart, WE, Belew, RK, et al.. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639–62. https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b .
BIOVIA discovery studio . Discovery studio modeling environment . San Diego, USA: Dassault Systȇmes; 2020.
Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, et al.. UCSF Chimera? a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084 .
doi: 10.1002/jcc.20084
Dolomanov, OV, Bourhis, LJ, Gildea, RJ, Howard, JAK, Puschmann, HJ. OLEX2: a complete structure solution, refinement and analysis program. Appl Cryst 2009;42:339–41. https://doi.org/10.1107/s0021889808042726 .
doi: 10.1107/s0021889808042726
Sheldrick, GM. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr A 2015;71:3–8. https://doi.org/10.1107/s2053273314026370 .
doi: 10.1107/s2053273314026370
Sheldrick, GM. Crystal structure refinement with SHELXL. Acta Crystallogr C 2015;71:3–8. https://doi.org/10.1107/S2053229614024218 .
doi: 10.1107/S2053229614024218