Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
06 2022
Historique:
received: 04 06 2021
accepted: 31 03 2022
pubmed: 20 5 2022
medline: 18 6 2022
entrez: 19 5 2022
Statut: ppublish

Résumé

Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across cell types. Genome-wide association studies have identified over 200 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis-regulatory elements. Here, we applied single-nucleus assay for transposase-accessible chromatin with sequencing to profile 28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell-type-specific elements and transcription factors, and prioritized functional CAD risk variants. We identified elements in smooth muscle cell transition states (for example, fibromyocytes) and functional variants predicted to alter smooth muscle cell- and macrophage-specific regulation of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription factors such as PRDM16 and TBX2. Together, this single-nucleus atlas provides a critical step towards interpreting regulatory mechanisms across the continuum of CAD risk.

Identifiants

pubmed: 35590109
doi: 10.1038/s41588-022-01069-0
pii: 10.1038/s41588-022-01069-0
pmc: PMC9203933
mid: NIHMS1794783
doi:

Substances chimiques

Chromatin 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

804-816

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL125863
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL144475
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL125224
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM133712
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL141425
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL148167
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL139478
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL164577
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL148239
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL135093
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL123370
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL130423
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL134817
Pays : United States
Organisme : NHLBI NIH HHS
ID : R00 HL125912
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).
pubmed: 12490960 doi: 10.1038/nature01323
Souilhol, C., Harmsen, M. C., Evans, P. C. & Krenning, G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res. 114, 565–577 (2018).
pubmed: 29309526 doi: 10.1093/cvr/cvx253
Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92, 1355–1374 (1995).
pubmed: 7648691 doi: 10.1161/01.CIR.92.5.1355
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).
pubmed: 29545366 pmcid: 5993603 doi: 10.1161/CIRCRESAHA.117.312513
Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).
pubmed: 29545365 doi: 10.1161/CIRCRESAHA.117.312509
Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).
pubmed: 31591603 pmcid: 7318784 doi: 10.1038/s41591-019-0590-4
Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).
pubmed: 31359001 pmcid: 7274198 doi: 10.1038/s41591-019-0512-5
Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).
pubmed: 32981416 pmcid: 7641189 doi: 10.1161/CIRCRESAHA.120.316770
Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).
pubmed: 32962412 pmcid: 8104264 doi: 10.1161/CIRCULATIONAHA.120.048378
Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020).
pubmed: 32674599 pmcid: 7682794 doi: 10.1161/CIRCULATIONAHA.120.046672
Wang, Y. et al. Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proc. Natl Acad. Sci. USA 117, 15818–15826 (2020).
pubmed: 32541024 pmcid: 7354942 doi: 10.1073/pnas.2006348117
Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387 pmcid: 4589895 doi: 10.1038/ng.3396
van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
pubmed: 29212778 pmcid: 5805277 doi: 10.1161/CIRCRESAHA.117.312086
Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).
pubmed: 28714975 doi: 10.1038/ng.3913
Koyama, S. et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat. Genet. 52, 1169–1177 (2020).
pubmed: 33020668 doi: 10.1038/s41588-020-0705-3
Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Preprint at medRxiv https://doi.org/10.1101/2021.05.24.21257377 (2021).
Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc. Res. 114, 1241–1257 (2018).
pubmed: 29617720
Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
pubmed: 22955828 pmcid: 3771521 doi: 10.1126/science.1222794
Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).
pubmed: 24210251 pmcid: 3824120 doi: 10.1016/j.ajhg.2013.10.012
Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).
pubmed: 25650801 pmcid: 4517609 doi: 10.1038/nrm3949
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Miller, C. L. et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).
pubmed: 27386823 pmcid: 4941121 doi: 10.1038/ncomms12092
Liu, B., Gloudemans, M. J., Rao, A. S., Ingelsson, E. & Montgomery, S. B. Abundant associations with gene expression complicate GWAS follow-up. Nat. Genet. 51, 768–769 (2019).
pubmed: 31043754 pmcid: 6904208 doi: 10.1038/s41588-019-0404-0
Zhao, Q. et al. Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping. Genome Biol. 21, 135 (2020).
pubmed: 32513244 pmcid: 7278146 doi: 10.1186/s13059-020-02049-5
Stolze, L. K. et al. Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits. Am. J. Hum. Genet. 106, 748–763 (2020).
pubmed: 32442411 pmcid: 7273528 doi: 10.1016/j.ajhg.2020.04.008
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756 pmcid: 4685948 doi: 10.1038/nature14590
Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
pubmed: 25953818 pmcid: 4836442 doi: 10.1126/science.aab1601
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
pubmed: 31375813 pmcid: 7299161 doi: 10.1038/s41587-019-0206-z
Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).
pubmed: 33106633 pmcid: 7606627 doi: 10.1038/s41588-020-00721-x
Chiou, J. et al. Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat. Genet. 53, 455–466 (2021).
pubmed: 33795864 pmcid: 9037575 doi: 10.1038/s41588-021-00823-0
Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594, 398–402 (2021).
pubmed: 34012112 doi: 10.1038/s41586-021-03552-w
Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).
pubmed: 33990324 pmcid: 8121433 doi: 10.1126/sciadv.abf1444
Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).
pubmed: 33850129 pmcid: 8044133 doi: 10.1038/s41467-021-22368-w
Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).
pubmed: 33184180 pmcid: 7785298 doi: 10.1126/science.aba7612
Rai, V. et al. Single-cell ATAC-seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol. Metab. 32, 109–121 (2020).
pubmed: 32029221 doi: 10.1016/j.molmet.2019.12.006
Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).
pubmed: 34616060 pmcid: 8494642 doi: 10.1038/s41586-021-03209-8
Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1143–1155 (2021).
pubmed: 34239132 pmcid: 8766217 doi: 10.1038/s41588-021-00894-z
Örd, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ. Res. 129, 240–258 (2021).
pubmed: 34024118 pmcid: 8260472 doi: 10.1161/CIRCRESAHA.121.318971
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090 pmcid: 5623106 doi: 10.1038/nmeth.4396
Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).
pubmed: 33633365 pmcid: 8012210 doi: 10.1038/s41588-021-00790-6
Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).
pubmed: 31792411 pmcid: 7258684 doi: 10.1038/s41587-019-0332-7
Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).
pubmed: 16631505 doi: 10.1016/j.jacc.2005.10.065
Mulligan-Kehoe, M. J. & Simons, M. Vasa vasorum in normal and diseased arteries. Circulation 129, 2557–2566 (2014).
pubmed: 24934463 doi: 10.1161/CIRCULATIONAHA.113.007189
Virmani, R. et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005).
pubmed: 16037567 doi: 10.1161/01.ATV.0000178991.71605.18
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Creemers, E. E., Sutherland, L. B., Oh, J., Barbosa, A. C. & Olson, E. N. Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR. Mol. Cell 23, 83–96 (2006).
pubmed: 16818234 doi: 10.1016/j.molcel.2006.05.026
Maeda, T., Gupta, M. P. & Stewart, A. F. R. TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochem. Biophys. Res. Commun. 294, 791–797 (2002).
pubmed: 12061776 doi: 10.1016/S0006-291X(02)00556-9
Almontashiri, N. A. M. et al. 9p21.3 coronary artery disease risk variants disrupt TEAD transcription factor-dependent transforming growth factor β regulation of p16 expression in human aortic smooth muscle cells. Circulation 132, 1969–1978 (2015).
pubmed: 26487755 doi: 10.1161/CIRCULATIONAHA.114.015023
Yoshida, T. et al. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ. Res. 92, 856–864 (2003).
pubmed: 12663482 doi: 10.1161/01.RES.0000068405.49081.09
Du, K. L. et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol. Cell. Biol. 23, 2425–2437 (2003).
pubmed: 12640126 pmcid: 150745 doi: 10.1128/MCB.23.7.2425-2437.2003
Chen, J., Kitchen, C. M., Streb, J. W. & Miano, J. M. Myocardin: a component of a molecular switch for smooth muscle differentiation. J. Mol. Cell. Cardiol. 34, 1345–1356 (2002).
pubmed: 12392995 doi: 10.1006/jmcc.2002.2086
Wang, D.-Z. et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc. Natl Acad. Sci. USA 99, 14855–14860 (2002).
pubmed: 12397177 pmcid: 137508 doi: 10.1073/pnas.222561499
Meadows, S. M., Myers, C. T. & Krieg, P. A. Regulation of endothelial cell development by ETS transcription factors. Semin. Cell Dev. Biol. 22, 976–984 (2011).
pubmed: 21945894 pmcid: 3263765 doi: 10.1016/j.semcdb.2011.09.009
Stamatovic, S. M., Keep, R. F., Mostarica-Stojkovic, M. & Andjelkovic, A. V. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J. Immunol. 177, 2651–2661 (2006).
pubmed: 16888027 doi: 10.4049/jimmunol.177.4.2651
Zhang, D. E., Hetherington, C. J., Chen, H. M. & Tenen, D. G. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 14, 373–381 (1994).
pubmed: 8264604 pmcid: 358386
Cui, L. et al. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat. Commun. 11, 2795 (2020).
pubmed: 32493933 pmcid: 7270081 doi: 10.1038/s41467-020-16466-4
Kitoh, A. et al. Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3
pubmed: 19800266 doi: 10.1016/j.immuni.2009.09.003
Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).
pubmed: 17377532 doi: 10.1038/nature05673
Masuda, A. et al. Essential role of GATA transcriptional factors in the activation of mast cells. J. Immunol. 178, 360–368 (2007).
pubmed: 17182574 doi: 10.4049/jimmunol.178.1.360
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706 pmcid: 5623146 doi: 10.1038/nmeth.4401
Nagao, M. et al. Coronary disease-associated gene TCF21 inhibits smooth muscle cell differentiation by blocking the myocardin-serum response factor pathway. Circ. Res. 126, 517–529 (2020).
pubmed: 31815603 doi: 10.1161/CIRCRESAHA.119.315968
Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Tabas, I. & Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634 (2017).
pubmed: 29045897 pmcid: 5747297 doi: 10.1016/j.immuni.2017.09.008
Farrugia, A. J. et al. CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion. J. Cell Biol. 219, e201912159 (2020).
pubmed: 32798219 pmcid: 7480113 doi: 10.1083/jcb.201912159
Nyati, K. K., Agarwal, R. G., Sharma, P. & Kishimoto, T. Arid5a regulation and the roles of Arid5a in the inflammatory response and disease. Front. Immunol. 10, 2790 (2019).
pubmed: 31867000 pmcid: 6906145 doi: 10.3389/fimmu.2019.02790
Lin, M.-E., Chen, T., Leaf, E. M., Speer, M. Y. & Giachelli, C. M. Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. Am. J. Pathol. 185, 1958–1969 (2015).
pubmed: 25987250 pmcid: 4484217 doi: 10.1016/j.ajpath.2015.03.020
Lin, M.-E. et al. Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc. Res. 112, 606–616 (2016).
pubmed: 27671804 pmcid: 5079276 doi: 10.1093/cvr/cvw205
Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).
pubmed: 31727856 pmcid: 7028213 doi: 10.1126/science.aay0793
Xu, S. et al. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur. Heart J. 40, 2398–2408 (2019).
pubmed: 31539914 pmcid: 6698662 doi: 10.1093/eurheartj/ehz303
Beaudoin, M. et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler. Thromb. Vasc. Biol. 35, 1472–1479 (2015).
pubmed: 25838425 pmcid: 4441556 doi: 10.1161/ATVBAHA.115.305534
Nanda, V. et al. Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus. PLoS Genet. 14, e1007755 (2018).
pubmed: 30444878 pmcid: 6268002 doi: 10.1371/journal.pgen.1007755
Benaglio, P. et al. Mapping genetic effects on cell type-specific chromatin accessibility and annotating complex trait variants using single nucleus ATAC-seq. Preprint at bioRxiv https://doi.org/10.1101/2020.12.03.387894 (2020).
Calderon, D. et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat. Genet. 51, 1494–1505 (2019).
pubmed: 31570894 pmcid: 6858557 doi: 10.1038/s41588-019-0505-9
Gate, R. E. et al. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet. 50, 1140–1150 (2018).
pubmed: 29988122 pmcid: 6097927 doi: 10.1038/s41588-018-0156-2
Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 3121 (2018).
pubmed: 30087329 pmcid: 6081462 doi: 10.1038/s41467-018-05379-y
Khetan, S. et al. Type 2 diabetes-associated genetic variants regulate chromatin accessibility in human islets. Diabetes 67, 2466–2477 (2018).
pubmed: 30181159 pmcid: 6198349 doi: 10.2337/db18-0393
Currin, K. W. et al. Genetic effects on liver chromatin accessibility identify disease regulatory variants. Am. J. Hum. Genet. 108, 1169–1189 (2021).
pubmed: 34038741 pmcid: 8323023 doi: 10.1016/j.ajhg.2021.05.001
Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213 (2016).
pubmed: 26656845 doi: 10.1038/ng.3467
Liu, B. et al. Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci. Am. J. Hum. Genet. 103, 377–388 (2018).
pubmed: 30146127 pmcid: 6128252 doi: 10.1016/j.ajhg.2018.08.001
Munz, M. et al. Qtlizer: comprehensive QTL annotation of GWAS results. Sci. Rep. 10, 20417 (2020).
pubmed: 33235230 pmcid: 7687904 doi: 10.1038/s41598-020-75770-7
Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014).
pubmed: 25033408 pmcid: 4102394 doi: 10.1371/journal.pcbi.1003711
Shrikumar, A., Prakash, E. & Kundaje, A. GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs. Bioinformatics 35, i173–i182 (2019).
pubmed: 31510661 pmcid: 6612808 doi: 10.1093/bioinformatics/btz322
Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47, 955–961 (2015).
pubmed: 26075791 pmcid: 4520745 doi: 10.1038/ng.3331
Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).
pubmed: 33828297 pmcid: 9153265 doi: 10.1038/s41586-021-03446-x
Koplev, S. et al. A mechanistic framework for cardiometabolic and coronary artery diseases. Nat. Cardiovasc. Res. 1, 85–100 (2022).
pubmed: 36276926 pmcid: 9583458 doi: 10.1038/s44161-021-00009-1
Higgins, E. M. et al. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2, e91225 (2017).
pubmed: 28289718 pmcid: 5333962 doi: 10.1172/jci.insight.91225
Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).
pubmed: 18719582 pmcid: 2583329 doi: 10.1038/nature07182
Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).
pubmed: 17618855 pmcid: 2564846 doi: 10.1016/j.cmet.2007.06.001
Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).
pubmed: 19641492 pmcid: 2754867 doi: 10.1038/nature08262
Liu, D. et al. PRDM16 upregulation induced by microRNA-448 inhibition alleviates atherosclerosis via the TGF-β signaling pathway inactivation. Front. Physiol. 11, 846 (2020).
pubmed: 32848826 pmcid: 7431868 doi: 10.3389/fphys.2020.00846
Warner, D. R. et al. PRDM16/MEL1: a novel Smad binding protein expressed in murine embryonic orofacial tissue. Biochim. Biophys. Acta 1773, 814–820 (2007).
pubmed: 17467076 doi: 10.1016/j.bbamcr.2007.03.016
Takahata, M. et al. SKI and MEL1 cooperate to inhibit transforming growth factor-β signal in gastric cancer cells. J. Biol. Chem. 284, 3334–3344 (2009).
pubmed: 19049980 doi: 10.1074/jbc.M808989200
Craps, S. et al. Prdm16 supports arterial flow recovery by maintaining endothelial function. Circ. Res. 129, 63–77 (2021).
pubmed: 33902304 pmcid: 8221541 doi: 10.1161/CIRCRESAHA.120.318501
Barron, M. R. et al. Serum response factor, an enriched cardiac mesoderm obligatory factor, is a downstream gene target for Tbx genes. J. Biol. Chem. 280, 11816–11828 (2005).
pubmed: 15591049 doi: 10.1074/jbc.M412408200
Shirai, M., Imanaka-Yoshida, K., Schneider, M. D., Schwartz, R. J. & Morisaki, T. T-box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgfβ2 expression and endocardial cushion formation. Proc. Natl Acad. Sci. USA 106, 18604–18609 (2009).
pubmed: 19846762 pmcid: 2773962 doi: 10.1073/pnas.0900635106
Hansson, G. K., Jonasson, L., Holm, J. & Claesson-Welsh, L. Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin. Exp. Immunol. 64, 261–268 (1986).
pubmed: 3527502 pmcid: 1542359
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
pubmed: 30166440 pmcid: 6571013 doi: 10.1126/science.aau0730
Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).
pubmed: 33098772 pmcid: 7669735 doi: 10.1016/j.cell.2020.09.056
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Phanstiel, D. H., Boyle, A. P., Araya, C. L. & Snyder, M. P. Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics 30, 2808–2810 (2014).
pubmed: 24903420 pmcid: 4173017 doi: 10.1093/bioinformatics/btu379
Franceschini, N. et al. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat. Commun. 9, 5141 (2018).
pubmed: 30510157 pmcid: 6277418 doi: 10.1038/s41467-018-07340-5
Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).
pubmed: 30578418 doi: 10.1038/s41588-018-0303-9
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).
pubmed: 22576172 pmcid: 3389768 doi: 10.1093/bioinformatics/bts277
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).
pubmed: 17924348 pmcid: 2265661 doi: 10.1086/521987
Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).
pubmed: 30100085 pmcid: 6128308 doi: 10.1016/j.ajhg.2018.07.015
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522 pmcid: 3137218 doi: 10.1093/bioinformatics/btr330
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Lee, D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics 32, 2196–2198 (2016).
pubmed: 27153584 pmcid: 4937189 doi: 10.1093/bioinformatics/btw142
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Talukdar, H. A. et al. Cross-tissue regulatory gene networks in coronary artery disease. Cell Syst. 2, 196–208 (2016).
pubmed: 27135365 pmcid: 4855300 doi: 10.1016/j.cels.2016.02.002
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).
pubmed: 20927193 pmcid: 2946910 doi: 10.1371/journal.pone.0012776
Shu, L. et al. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC Genom. 17, 874 (2016).
doi: 10.1186/s12864-016-3198-9
Otsuka, F. et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis 241, 772–782 (2015).
pubmed: 26058741 pmcid: 4510015 doi: 10.1016/j.atherosclerosis.2015.05.011

Auteurs

Adam W Turner (AW)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Shengen Shawn Hu (SS)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Jose Verdezoto Mosquera (JV)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Wei Feng Ma (WF)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA.
Department of Pathology, University of Virginia, Charlottesville, VA, USA.

Chani J Hodonsky (CJ)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.

Doris Wong (D)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.

Gaëlle Auguste (G)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Yipei Song (Y)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Katia Sol-Church (K)

Department of Pathology, University of Virginia, Charlottesville, VA, USA.
Genome Analysis & Technology Core, University of Virginia, Charlottesville, VA, USA.

Emily Farber (E)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA.

Soumya Kundu (S)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

Anshul Kundaje (A)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Department of Computer Science, Stanford University, Stanford, CA, USA.

Nicolas G Lopez (NG)

Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA.

Lijiang Ma (L)

Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Saikat Kumar B Ghosh (SKB)

CVPath Institute, Gaithersburg, MD, USA.

Suna Onengut-Gumuscu (S)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA.
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.

Euan A Ashley (EA)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.

Thomas Quertermous (T)

Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.

Aloke V Finn (AV)

CVPath Institute, Gaithersburg, MD, USA.

Nicholas J Leeper (NJ)

Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA.

Jason C Kovacic (JC)

Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.

Johan L M Björkegren (JLM)

Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.

Chongzhi Zang (C)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. zang@virginia.edu.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA. zang@virginia.edu.
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA. zang@virginia.edu.

Clint L Miller (CL)

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. clintm@virginia.edu.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA. clintm@virginia.edu.
Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA. clintm@virginia.edu.
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA. clintm@virginia.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH