A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body.

average shape brain atlas central complex honeybee navigation neuropeptides optic tubercle spatial orientation

Journal

The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041

Informations de publication

Date de publication:
10 2022
Historique:
revised: 15 04 2022
received: 13 03 2022
accepted: 26 04 2022
pubmed: 21 5 2022
medline: 30 7 2022
entrez: 20 5 2022
Statut: ppublish

Résumé

The central complex (CX) in the brain of insects is a highly conserved group of midline-spanning neuropils consisting of the upper and lower division of the central body, the protocerebral bridge, and the paired noduli. These neuropils are the substrate for a number of behaviors, most prominently goal-oriented locomotion. Honeybees have been a model organism for sky-compass orientation for more than 70 years, but there is still very limited knowledge about the structure and function of their CX. To advance and facilitate research on this brain area, we created a high-resolution three-dimensional atlas of the honeybee's CX and associated neuropils, including the posterior optic tubercles, the bulbs, and the anterior optic tubercles. To this end, we developed a modified version of the iterative shape averaging technique, which allowed us to achieve high volumetric accuracy of the neuropil models. For a finer definition of spatial locations within the central body, we defined layers based on immunostaining against the neuropeptides locustatachykinin, FMRFamide, gastrin/cholecystokinin, and allatostatin and included them into the atlas by elastic registration. Our honeybee CX atlas provides a platform for future neuroanatomical work.

Identifiants

pubmed: 35593178
doi: 10.1002/cne.25339
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2416-2438

Subventions

Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : PF 714/4-1
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : PF714/5-1
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : INST160/447-1FUGG
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : INST93/829-1FUGG
Organisme : FAPEMIG - Minas Gerais Research Funding Foundation
ID : APQ-02711-21

Informations de copyright

© 2022 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.

Références

Adden, A., Wibrand, S., Pfeiffer, K., Warrant, E., & Heinze, S. (2020). The brain of a nocturnal migratory insect, the Australian bogong moth. Journal of Comparative Neurology, 528(11), 1942-1963.
Beer, K., Kolbe, E., Kahana, N. B., Yayon, N., Weiss, R., Menegazzi, P., Bloch, G., & Helfrich-Förster, C. (2018). Pigment-dispersing factor-expressing neurons convey circadian information in the honey bee brain. Open Biology, 8(1), 170224.
Beetz, M. J., el Jundi, B., Heinze, S., & Homberg, U. (2015). Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria. Journal of Comparative Neurology, 523, 1589-1607.
Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege, H. - C., & Menzel, R. (2005). Three-dimensional average-shape atlas of the honeybee brain and its applications. Journal of Comparative Neurology, 492, 1-19.
Davis, N. T., Homberg, U., Teal, P. E., Altstein, M., Agricola, H. - J., & Hildebrand, J. G. (1996). Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth, Manduca sexta: Immunoreactivities to PBAN, and other neuropeptides. Microscopy Research and Technique, 35, 201-229.
Dent, J. A., Polson, A. G., & Klymkowsky, M. W. (1989). A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development (Cambridge, England), 105, 61-74.
Dreyer, D., Vitt, H., Dippel, S., Goetz, B., el Jundi, B., Kollmann, M., Hütteroth, W., & Schachtner, J. (2010). 3D Standard Brain of the red flour beetle Tribolium castaneum: A tool to study metamorphic development and adult plasticity. Frontiers in Systems Neuroscience, 4, 3.
Ehmer, B., & Gronenberg, W. (2002). Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). Journal of Comparative Neurology, 451, 362-373.
el Jundi, B., & Heinze, S. (2020). Three-dimensional atlases of insect brains. In: Pelc, R., Walz, W., & Doucette, J. R., editors. Neurohistology and Imaging Techniques. New York, NY: Springer US. pp. 73-124.
el Jundi, B., Heinze, S., Lenschow, C., Kurylas, A., Rohlfing, T., & Homberg, U. (2010). The locust standard brain: A 3D standard of the central complex as a platform for neural network analysis. Frontiers in Systems Neuroscience, 3, 21.
el Jundi, B., & Homberg, U. (2010). Evidence for the possible existence of a second polarization-vision pathway in the locust brain. Journal of Insect Physiology, 56, 971-979.
el Jundi, B., Hütteroth, W., Kurylas, A. E., & Schachtner, J. (2009). Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. Journal of Comparative Neurology, 517, 210-225.
el Jundi, B., Warrant, E. J., Byrne, M. J., Khaldy, L., Baird, E., Smolka, J., & Dacke, M. (2015). Neural coding underlying the cue preference for celestial orientation. PNAS, 112, 11395-11400.
el Jundi, B., Warrant, E. J., Pfeiffer, K., & Dacke, M. (2018). Neuroarchitecture of the dung beetle central complex. Journal of Comparative Neurology, 526, 2612-2630.
Galizia, C. G., & Kreissl, S. (2012). Neuropeptides in honey bees. In: (Galizia, C. G., Eisenhardt, D., & Giurfa, M., Eds.), Honeybee Neurobiology and Behavior. Springer Netherlands: Dordrecht. pp. 211-226.
Green, J., Adachi, A., Shah, K. K., Hirokawa, J. D., Magani, P. S., & Maimon, G. (2017). A neural circuit architecture for angular integration in Drosophila. Nature, 546, 101-106.
Groothuis, J., Pfeiffer, K., el Jundi, B., & Smid, H. M. (2019). The jewel wasp standard brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. Arthropod Structure and Development, 51, 41-51.
Hardcastle, B. J., Omoto, J. J., Kandimalla, P., Nguyen, B. - C. M., Keleş, M. F., Boyd, N. K., Hartenstein, V., & Frye, M. A. (2021). A visual pathway for skylight polarization processing in Drosophila. eLife, 10, e63225.
Heinze, S., Florman, J., Asokaraj, S., el Jundi, B., & Reppert, S. M. (2013). Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. Journal of Comparative Neurology, 521, 267-298.
Heinze, S., & Homberg, U. (2007). Maplike representation of celestial E-vector orientations in the brain of an insect. Science, 315, 995-997.
Heinze, S., & Homberg, U. (2008). Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. Journal of Comparative Neurology, 511, 454-478.
Heinze, S., & Reppert, S. M. (2011). Sun compass integration of skylight cues in migratory monarch butterflies. Neuron, 69, 345-358.
Heinze, S., & Reppert, S. M. (2012). Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. Journal of Comparative Neurology, 520, 1599-1628.
Held, M., Berz, A., Hensgen, R., Muenz, T. S., Scholl, C., Rössler, W., Homberg, U., & Pfeiffer, K. (2016). Microglomerular synaptic complexes in the sky-compass network of the honeybee connect parallel pathways from the anterior optic tubercle to the central complex. Frontiers in Behavioural Neuroscience, 10, 186.
Held, M., Le, K., Pegel, U., Dersch, F., Beetz, M. J., Pfeiffer, K., & Homberg, U. (2020). Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. Arthropod Structure & Development, 58, 100971.
Hensgen, R., England, L., Homberg, U., & Pfeiffer, K. (2020). Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types. Journal of Comparative Neurology, 105, 61.
Homberg, U. (1985). Interneurones of the central complex in the bee brain (Apis mellifera, L.). Journal of Insect Physiology, 31, 251-264.
Homberg, U., Davis, N. T., & Hildebrand, J. G. (1991). Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. Journal of Comparative Neurology, 303, 35-52.
Homberg, U., Hofer, S., Pfeiffer, K., & Gebhardt, S. (2003). Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. Journal of Comparative Neurology, 462, 415-430.
Homberg, U., & Würden, S. (1997). Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. Journal of Comparative Neurology, 386, 329-346.
Hu, W., Peng, Y., Sun, J., Zhang, F., Zhang, X., Wang, L., Li, Q., & Zhong, Y. (2018). Fan-shaped body neurons in the Drosophila brain regulate both innate and conditioned nociceptive avoidance. Cell Reports, 24, 1573-1584.
Hulse, B. K., Haberkern, H., Franconville, R., Turner-Evans, D. B., Takemura, S. - Y., Wolff, T., Noorman, M., Dreher, M., Dan, C., Parekh, R., Hermundstad, A. M., Rubin, G. M., & Jayaraman, V. (2021). A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife, 10, e66039.
Ito, K., Shinomiya, K., Ito, M., Armstrong, J. D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L. L., Rössler, W., Simpson, J. H., Strausfeld, N. J., Strauss, R., & Vosshall, L. B. (2014). A systematic nomenclature for the insect brain. Neuron, 81, 755-765.
Jenett, A., Schindelin, J. E., & Heisenberg, M. (2006). The Virtual Insect Brain protocol: Creating and comparing standardized neuroanatomy. Bmc Bioinformatics [Electronic Resource], 7, 544.
Jonescu, C. N. (1909). Vergleichende Untersuchungen über das Gehirn der Honigbiene. Jenaische Zeitschrift für Naturwissenschaft, 45, 111-180.
Kahsai, L., Martin, J. - R., & Winther, Å. M. E. (2010). Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. Journal of Experimental Biology, 213, 2256-2265.
Kahsai, L., & Winther, Å. M. E. (2011). Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters. Journal of Comparative Neurology, 519, 290-315.
Kenyon, F. C. (1896). The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. Journal of Comparative Neurology, 6, 133-210.
Kinoshita, M., Pfeiffer, K., & Homberg, U. (2007). Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. Journal of Experimental Biology, 210, 1350-1361.
Klagges, B. R., Heimbeck, G., Godenschwege, T. A., Hofbauer, A., Pflugfelder, G. O., Reifegerste, R., Reisch, D., Schaupp, M., Buchner, S., & Buchner, E. (1996). Invertebrate synapsins: A single gene codes for several isoforms in Drosophila. Journal of Neuroscience, 16, 3154-3165.
Kreissl, S., & Bicker, G. (1989). Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. Journal of Comparative Neurology, 286, 71-84.
Kreissl, S., Strasser, C., & Galizia, C. G. (2010). Allatostatin immunoreactivity in the honeybee brain. Journal of Comparative Neurology, 518, 1391-1417.
Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A., & Homberg, U. (2008). Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell and Tissue Research, 333, 125-145.
Li, F., Lindsey, J. W., Marin, E. C., Otto, N., Dreher, M., Dempsey, G., Stark, I., Bates, A. S., Pleijzier, M. W., Schlegel, P., Nern, A., Takemura, S. - Y., Eckstein, N., Yang, T., Francis, A., Braun, A., Parekh, R., Costa, M., Scheffer, L. K., …, & Rubin, G. M. (2020). The connectome of the adult Drosophila mushroom body provides insights into function. eLife, 9, e62575.
Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., & Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature, 439, 551-556.
Lu, J., Behbahani, A. H., Hamburg, L., Westeinde, E. A., Dawson, P. M., Lyu, C., Maimon, G., Dickinson, M. H., Druckmann, S., & Wilson, R. I. (2022). Transforming representations of movement from body- to world-centric space. Nature, 601, 98-104.
Lyu, C., Abbott, L. F., & Maimon, G. (2022). Building an allocentric travelling direction signal via vector computation. Nature, 601, 92-97.
Marder, E., Calabrese, R. L., Nusbaum, M. P., & Trimmer, B. (1987). Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. Journal of Comparative Neurology, 259, 150-163.
Milde, J. J. (1988). Visual responses of interneurones in the posterior median protocerebrum and the central complex of the honeybee Apis mellifera. Journal of Insect Physiology, 34, 427-436.
Mobbs, P. G.. (1985). Brain structure. In: Kerkut, G. A., & Gilbert, L., editors. Comprehensive insect physiology biochemistry and pharmacology. pp. 299-370.
Mota, T., Yamagata, N., Giurfa, M., Gronenberg, W., & Sandoz, J. - C. (2011). Neural organization and visual processing in the anterior optic tubercle of the honeybee brain. Journal of Neuroscience, 31, 11443-11456.
Nässel, D. R., & Homberg, U. (2006). Neuropeptides in interneurons of the insect brain. Cell and Tissue Research, 326, 1-24.
Nässel, D. R., Kim, M. Y., & Lundquist, C. T. (1995). Several forms of callitachykinins are distributed in the central nervous system and intestine of the blowfly Calliphora vomitoria. Journal of Experimental Biology, 198, 2527-2536.
Okubo, T., Patella, P., D'Alessandro, I., & Wilson, R. I. (2020). A neural network for wind-guided compass navigation. Neuron, 107, 924-940.e18.
Ott, S. R. (2008). Confocal microscopy in large insect brains: Zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. Journal of Neuroscience Methods, 172, 220-230.
Pegel, U., Pfeiffer, K., & Homberg, U. (2018). Integration of celestial compass cues in the central complex of the locust brain. Journal of Experimental Biology, 221, jeb171207.
Pegel, U., Pfeiffer, K., Zittrell, F., Scholtyssek, C., & Homberg, U. (2019). Two compasses in the central complex of the locust brain. Journal of Neuroscience, 39, 3070-3080.
Petri, B., Stengl, M., Würden, S., & Homberg, U. (1995). Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell and Tissue Research, 282, 3-19.
Pfeiffer, K., & Homberg, U. (2007). Coding of azimuthal directions via time-compensated combination of celestial compass cues. Current Biology, 17, 960-965.
Pfeiffer, K., & Homberg, U. (2014). Organization and functional roles of the central complex in the insect b rain. Annual Review of Entomology, 59, 165-184.
Pfeiffer, K., & Kinoshita, M. (2012). Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). Journal of Comparative Neurology, 520, 212-229.
Pfeiffer, K., Kinoshita, M., & Homberg, U. (2005). Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. Journal of Neurophysiology, 94, 3903-3915.
Rein, K., Zöckler, M., Mader, M. T., Grübel, C., & Heisenberg, M. (2002). The Drosophila Standard Brain. Current Biology, 12, 227-231.
Rohlfing, T., Brandt, R., Maurer, C. R., & Menzel, R.. (2001). Bee brains, B-splines and computational democracy: generating an average shape atlas. Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, MMBIA, Kauai, Hawaii, December, 2001, 187-194.
Rohlfing, T., & Maurer, C. R. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine, 7, 16-25.
Rohlfing, T., & Maurer, C. R. (2007). Shape-based averaging. IEEE Transactions on Image Process, 16, 153-161.
Rother, L., Kraft, N., Smith, D. B., el Jundi, B., Gill, R. J., & Pfeiffer, K. (2021). A micro-CT-based standard brain atlas of the bumblebee. Cell and Tissue Research, 386, 29-45.
Rybak, J., & Menzel, R. (1993). Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe. Journal of Comparative Neurology, 334, 444-465.
Sakura, M., Lambrinos, D., & Labhart, T. (2008). Polarized skylight navigation in insects: Model and electrophysiology of e-vector coding by neurons in the central complex. Journal of Neurophysiology, 99, 667-682.
Sareen, P. F., McCurdy, L. Y., & Nitabach, M. N. (2021). A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nature Communications, 12, 4131.
Sayre, M. E., Templin, R., Chavez, J., Kempenaers, J., & Heinze, S. (2021). A projectome of the bumblebee central complex. eLife, 10, e68911.
Schäfer, S., & Rehder, V. (1989). Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. Journal of Comparative Neurology, 280, 43-58.
Schürmann, F. W., & Erber, J. (1990). FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light-and electron microscopical study. Neuroscience, 38, 797-807.
Seelig, J. D., & Jayaraman, V. (2015). Neural dynamics for landmark orientation and angular path integration. Nature, 521, 186-191.
Siju, K. P., Reifenrath, A., Scheiblich, H., Neupert, S., Predel, R., Hansson, B. S., Schachtner, J., & Ignell, R. (2014). Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti. Journal of Comparative Neurology, 522, 592-608.
Stengl, M., & Homberg, U. (1994). Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. Journal of Comparative Physiology A, 175, 203-213.
Stone, T., Webb, B., Adden, A., Weddig, N. B., Honkanen, A., Templin, R., Wcislo, W., Scimeca, L., Warrant, E., & Heinze, S. (2017). An anatomically constrained model for path integration in the bee brain. Current Biology, 27, 3069-3085.e11.
Strausfeld, N. J., Homberg, U., & Kloppenburg, P. (2000). Parallel organization in honey bee mushroom bodies by peptidergic kenyon cells. Journal of Comparative Neurology, 424, 179-195.
Tang, Q. - B., Song, W. - W., Chang, Y. - J., Xie, G. - Y., Chen, W. - B., & Zhao, X. - C. (2019). Distribution of serotonin-immunoreactive neurons in the brain and gnathal ganglion of caterpillar Helicoverpa armigera. Frontiers in Neuroanatomy, 13, 56.
Timm, J., Scherner, M., Matschke, J., Kern, M., & Homberg, U. (2021). Tyrosine hydroxylase immunostaining in the central complex of dicondylian insects. Journal of Comparative Neurology, 529, 3131-3154.
Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J. D., Druckmann, S., & Jayaraman, V. (2017). Angular velocity integration in a fly heading circuit. eLife, 6, e23496.
Veenstra, J. A., Lau, G. W., Agricola, H. J., & Petzel, D. H. (1995). Immunohistological localization of regulatory peptides in the midgut of the female mosquito Aedes aegypti. Histochemistry and Cell Biology, 104, 337-347.
Vitzthum, H., & Homberg, U. (1998). Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. Journal of Comparative Neurology, 390, 455-469.
Vitzthum, H., Homberg, U., & Agricola, H. (1996). Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. Journal of Comparative Neurology, 369, 419-437.
von Frisch, K. (1965). Tanzsprache und Orientierung der Bienen. Springer.
Vries, L. D., K, P., Trebels, B., Adden, A. K., Green, K., Warrant, E., & Heinze, S. (2017). Comparison of navigation-related brain regions in migratory versus non-migratory noctuid moths. Frontiers in Behavioural Neuroscience, 11, 158.
Wei, H., el Jundi, B., Homberg, U., & Stengl, M. (2010). Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. Journal of Comparative Neurology, 518, 4113-4133.
Weir, P. T., & Dickinson, M. H. (2015). Functional divisions for visual processing in the central brain of flying Drosophila. PNAS, 112, E5523-E5532.
Wolff, T., Iyer, N. A., & Rubin, G. M. (2015). Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. Journal of Comparative Neurology, 523, 997-1037.
Würden, S., & Homberg, U. (1995). Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria. Journal of Comparative Neurology, 362, 305-319.
Xie, X., Tabuchi, M., Corver, A., Duan, G., Wu, M. N., & Kolodkin, A. L. (2019). Semaphorin 2b regulates sleep-circuit formation in the Drosophila central brain. Neuron, 104, 322-337.e14.
Zeller, M., Held, M., Bender, J., Berz, A., Heinloth, T., Hellfritz, T., & Pfeiffer, K. (2015). Transmedulla neurons in the sky compass network of the honeybee (Apis mellifera) are a possible site of circadian input. PloS One, 10, e0143244.

Auteurs

Andreas Kaiser (A)

Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.

Ronja Hensgen (R)

Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.

Katja Tschirner (K)

Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany.

Evelyn Beetz (E)

Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany.

Hauke Wüstenberg (H)

Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.

Marcel Pfaff (M)

Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany.

Theo Mota (T)

Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.

Keram Pfeiffer (K)

Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.
Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH