Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases.
Amyotrophic lateral sclerosis
Hereditary spastic paraplegia
Magnetic resonance imaging
Primary lateral sclerosis
Primary motor cortex
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
04
01
2022
accepted:
08
05
2022
revised:
15
04
2022
pubmed:
21
5
2022
medline:
1
12
2022
entrez:
20
5
2022
Statut:
ppublish
Résumé
Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients. We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated. The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases). Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients. • The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence. • Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity. • The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.
Identifiants
pubmed: 35593959
doi: 10.1007/s00330-022-08865-6
pii: 10.1007/s00330-022-08865-6
doi:
Substances chimiques
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8058-8064Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to European Society of Radiology.
Références
Shribman S, Reid E, Crosby AH, Houlden H, Warner TT (2019) Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 18(12):1136–1146
pubmed: 31377012
Murala S, Nagarajan E, Bollu PC (2021) Hereditary spastic paraplegia. Neurol Sci 42(3):883–894
pubmed: 33439395
Saputra L, Kumar KR (2021) Challenges and controversies in the genetic diagnosis of hereditary spastic paraplegia. Curr Neurol Neurosci Rep 21(4):15. https://doi.org/10.1007/s11910-021-01099-x
doi: 10.1007/s11910-021-01099-x
pubmed: 33646413
pmcid: 7921051
de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16(2):525–551
pubmed: 27271711
Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30(6):576–584
pubmed: 15540998
Salinas S, Proukakis C, Crosby A, Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7(12):1127–1138
pubmed: 19007737
Behan WM, Maia M (1974) Strümpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37(1):8–20
pubmed: 4813430
pmcid: 494557
Bruyn RP (1992) The neuropathology of hereditary spastic paraparesis. Clin Neurol Neurosurg 94(Suppl):S16–S18
pubmed: 1320499
Schwarz GA, Liu CN (1956) Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75(2):144–162
pubmed: 13282534
Wakabayashi K, Kobayashi H, Kawasaki S, Kondo H, Takahashi H (2001) Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules. Acta Neuropathol 101(1):69–73
pubmed: 11194944
Denora PS, Smets K, Zolfanelli F et al (2016) Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 139(Pt 6):1723–1734
pubmed: 27016404
pmcid: 5839621
White KD, Ince PG, Lusher M et al (2000) Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology 55(1):89–94
pubmed: 10891911
Fink JK (2001) Progressive spastic paraparesis: hereditary spastic paraplegia and its relation to primary and amyotrophic lateral sclerosis. Semin Neurol 21(2):199–207
pubmed: 11442328
Harding AE (1981) Hereditary ‘pure’ spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry 44(10):871–883
pubmed: 7310405
pmcid: 491171
Brugman F, Veldink JH, Franssen H et al (2009) Differentiation of hereditary spastic paraparesis from primary lateral sclerosis in sporadic adult-onset upper motor neuron syndromes. Arch Neurol 66(4):509–514
pubmed: 19364936
Fullam T, Statland J (2021) Upper motor neuron disorders: primary lateral sclerosis, upper motor neuron dominant amyotrophic lateral sclerosis, and hereditary spastic paraplegia. Brain Sci 11(5):611. https://doi.org/10.3390/brainsci11050611
doi: 10.3390/brainsci11050611
pubmed: 34064596
pmcid: 8151104
Agosta F, Chiò A, Cosottini M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 31(10):1769–1777
pubmed: 20360339
pmcid: 7964007
Cosottini M, Pesaresi I, Piazza S et al (2012) Structural and functional evaluation of cortical motor areas in amyotrophic lateral sclerosis. Exp Neurol 234(1):169–180
pubmed: 22226599
Kwan JY, Jeong SY, Van Gelderen P et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7(4):e35241. https://doi.org/10.1371/journal.pone.0035241
doi: 10.1371/journal.pone.0035241
pubmed: 22529995
pmcid: 3328441
Cosottini M, Donatelli G, Costagli M et al (2016) High-resolution 7T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 37:455–461
pubmed: 26680464
pmcid: 7960124
Costagli M, Donatelli G, Biagi L et al (2016) Magnetic susceptibility in the deep layers of the primary motor cortex in amyotrophic lateral sclerosis. Neuroimage Clin 12:965–969
pubmed: 27995062
pmcid: 5153607
Donatelli G, Retico A, Caldarazzo Ienco E et al (2018) Semiautomated evaluation of the primary motor cortex in patients with amyotrophic lateral sclerosis at 3T. AJNR Am J Neuroradiol 39(1):63–69
pubmed: 29122765
pmcid: 7410679
Donatelli G, Caldarazzo Ienco E, Costagli M et al (2019) MRI cortical feature of bulbar impairment in patients with amyotrophic lateral sclerosis. Neuroimage Clin 24:101934. https://doi.org/10.1016/j.nicl.2019.101934
doi: 10.1016/j.nicl.2019.101934
pubmed: 31377555
pmcid: 6698695
Filippi M, Agosta F, Abrahams S et al (2010) EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol 17(4):526–533
pubmed: 20136647
pmcid: 3154636
Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155
pubmed: 6133167
Schüle R, Holland-Letz T, Klimpe S et al (2006) The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67(3):430–434
pubmed: 16894103
Turner MR, Barohn RJ, Corcia P et al (2020) Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry 91:373–377
pubmed: 32029539
Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299
pubmed: 11464847
Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS Functional Rating Scale that incorporates assessments of respiratory function. BDNF ALS Study Group (phase III). J Neurol Sci 169(1-2):13–21
pubmed: 10540002
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174
pubmed: 843571
Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc Series B 30:582–598
Strong MJ, Gordon PH (2005) Primary lateral sclerosis, hereditary spastic paraplegia and amyotrophic lateral sclerosis: discrete entities or spectrum? Amyotroph Lateral Scler Other Motor Neuron Disord 6(1):8–16
pubmed: 16036421
Gordon PH, Cheng B, Katz IB et al (2006) The natural history of primary lateral sclerosis. Neurology 66(5):647–653
pubmed: 16534101
Gozutok O, Helmold BR, Ozdinler PH (2021) Mutations and protein interaction landscape reveal key cellular events perturbed in upper motor neurons with HSP and PLS. Brain Sci 11(5):578. https://doi.org/10.3390/brainsci11050578
doi: 10.3390/brainsci11050578
pubmed: 33947096
pmcid: 8146506
Mackay-Sim A (2021) Hereditary spastic paraplegia: from genes, cells and networks to novel pathways for drug discovery. Brain Sci 11(3):403. https://doi.org/10.3390/brainsci11030403
doi: 10.3390/brainsci11030403
pubmed: 33810178
pmcid: 8004882
Fink JK (2013) Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126(3):307–328
pubmed: 23897027
pmcid: 4045499
Suzuki SO, Iwaki T, Arakawa K, Furuya H, Fujii N, Iwaki A (2011) An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 122(6):775–781
pubmed: 22101368
Agosta F, Scarlato M, Spinelli EG et al (2015) Hereditary spastic paraplegia: beyond clinical phenotypes toward a unified pattern of central nervous system damage. Radiology 276(1):207–218
pubmed: 25611737
da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC Jr (2019) Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 9:1117. https://doi.org/10.3389/fneur.2018.01117
doi: 10.3389/fneur.2018.01117
pubmed: 30713518
pmcid: 6346681
Lindig T, Bender B, Hauser TK et al (2015) Gray and white matter alterations in hereditary spastic paraplegia type SPG4 and clinical correlations. J Neurol 262(8):1961–1971
pubmed: 26050637
Ince PG, Evans J, Knopp M et al (2003) Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60(8):1252–1258
pubmed: 12707426
Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263
pubmed: 21349440
Riad SM, Hathout H, Huang JC (2011) High T2 signal in primary lateral sclerosis supports the topographic distribution of fibers in the corpus callosum: assessing disease in the primary motor segment. AJNR Am J Neuroradiol 32(4):E61–E64
pubmed: 20299433
pmcid: 7965866
Pringle CE, Hudson AJ, Munoz DG, Kiernan JA, Brown WF, Ebers GC (1992) Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain 115(Pt2):495–520
pubmed: 1606479
Tan CF, Kakita A, Piao YS et al (2003) Primary lateral sclerosis: a rare upper-motor-predominant form of amyotrophic lateral sclerosis often accompanied by frontotemporal lobar degeneration with ubiquitinated neuronal inclusions? Report of an autopsy case and a review of the literature. Acta Neuropathol 105(6):615–620
pubmed: 12734667
Dickson DW, Josephs KA, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114(1):71–79
pubmed: 17569066
Beal MF, Richardson EP Jr (1981) Primary lateral sclerosis: a case report. Arch Neurol 38(10):630–633
pubmed: 7295106
Watanabe R, Iino M, Honda M, Sane J, Hara M (1997) Primary lateral sclerosis. Neuropathology 17:220–224
Paganoni S, Alshikho MJ, Zürcher NR et al (2017) Imaging of glia activation in people with primary lateral sclerosis. Neuroimage Clin 17:347–353
pubmed: 29159046
pmcid: 5681341
Mackenzie IRA (2020) Neuropathology of primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 21(sup1):47–51
pubmed: 33602010
de Bot ST, van den Elzen RTM, Mensenkamp AR et al (2010) Hereditary spastic paraplegia due to SPAST mutations in 151 Dutch patients: new clinical aspects and 27 novel mutations. J Neurol Neurosurg Psychiatry 81(10):1073–1078
pubmed: 20562464
Magariello A, Muglia M, Patitucci A et al (2010) Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci 288(1-2):96–100
pubmed: 19875132
D’Amore A, Tessa A, Casali C et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study. Front Neurol 9:981. https://doi.org/10.3389/fneur.2018.00981
doi: 10.3389/fneur.2018.00981
pubmed: 30564185
pmcid: 6289125
Brugman F, Wokke JH, Scheffer H, Versteeg MH, Sistermans EA, van den Berg LH (2005) Spastin mutations in sporadic adult-onset upper motor neuron syndromes. Ann Neurol 58(6):865–869
pubmed: 16240363
Lee H, Deignan JL, Dorrani N et al (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312(18):1880–1887
pubmed: 25326637
pmcid: 4278636
DaRe JT, Vasta V, Penn J, Tran N-T B, Hahn SH (2013) Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet 14:118. https://doi.org/10.1186/1471-2350-14-118
doi: 10.1186/1471-2350-14-118
pubmed: 24215330
pmcid: 3827825
Jia X, Madireddy L, Caillier S (2018) Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann Neurol 84(1):51–63
pubmed: 29908077
pmcid: 6119489
Balicza P, Varga NÁ, Bolgár B et al (2019) Comprehensive analysis of rare variants of 101 autism-linked genes in a Hungarian cohort of autism spectrum disorder patients. Front Genet 10:434. https://doi.org/10.3389/fgene.2019.00434
doi: 10.3389/fgene.2019.00434
pubmed: 31134136
pmcid: 6517558
Mintchev N, Zamba-Papanicolaou E, Kleopa KA, Christodoulou K (2009) A novel ALS2 splice-site mutation in a Cypriot juvenile-onset primary lateral sclerosis family. Neurology 72(1):28–32
pubmed: 19122027
Al-Saif A, Bohlega S, Al-Mohanna F (2012) Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol 72(4):510–516
pubmed: 23109145