Usefulness of lung ultrasound for early detection of hospital-acquired pneumonia in cardiac critically ill patients on venoarterial extracorporeal membrane oxygenation.
Color Doppler intrapulmonary flow
Doppler color lung ultrasound
Dynamic air bronchogram
Hospital-acquired pneumonia
Intensive care unit
Lung ultrasound
Venoarterial extracorporeal membrane oxygenation
Journal
Annals of intensive care
ISSN: 2110-5820
Titre abrégé: Ann Intensive Care
Pays: Germany
ID NLM: 101562873
Informations de publication
Date de publication:
21 May 2022
21 May 2022
Historique:
received:
13
01
2022
accepted:
21
04
2022
entrez:
21
5
2022
pubmed:
22
5
2022
medline:
22
5
2022
Statut:
epublish
Résumé
Hospital-acquired pneumonia (HAP) is the most common and severe complication in patients treated with venoarterial extracorporeal membrane oxygenation (VA ECMO) and its diagnosis remains challenging. Nothing is known about the usefulness of lung ultrasound (LUS) in early detection of HAP in patients treated with VA ECMO. Also, LUS and chest radiography were performed when HAP was suspected in cardiac critically ill adult VA ECMO presenting with acute respiratory failure. The sonographic features of HAP in VA ECMO patients were determined and we assessed the performance of the lung ultrasound simplified clinical pulmonary score (LUS-sCPIS), the sCPIS and bioclinical parameters or chest radiography alone for early diagnosis of HAP. We included 70 patients, of which 44 (63%) were independently diagnosed with HAP. LUS examination revealed that color Doppler intrapulmonary flow (P = 0.0000043) and dynamic air bronchogram (P = 0.00024) were the most frequent HAP-related signs. The LUS-sCPIS (area under the curve = 0.77) yielded significantly better results than the sCPIS (area under the curve = 0.65; P = 0.004), while leukocyte count, temperature and chest radiography were not discriminating for HAP diagnosis. Diagnosis of HAP is a daily challenge for the clinician managing patients on venoarterial ECMO. Lung ultrasound can be a valuable tool as the initial imaging modality for the diagnosis of pneumonia. Color Doppler intrapulmonary flow and dynamic air bronchogram appear to be particularly insightful for the diagnosis of HAP.
Sections du résumé
BACKGROUND
BACKGROUND
Hospital-acquired pneumonia (HAP) is the most common and severe complication in patients treated with venoarterial extracorporeal membrane oxygenation (VA ECMO) and its diagnosis remains challenging. Nothing is known about the usefulness of lung ultrasound (LUS) in early detection of HAP in patients treated with VA ECMO. Also, LUS and chest radiography were performed when HAP was suspected in cardiac critically ill adult VA ECMO presenting with acute respiratory failure. The sonographic features of HAP in VA ECMO patients were determined and we assessed the performance of the lung ultrasound simplified clinical pulmonary score (LUS-sCPIS), the sCPIS and bioclinical parameters or chest radiography alone for early diagnosis of HAP.
RESULTS
RESULTS
We included 70 patients, of which 44 (63%) were independently diagnosed with HAP. LUS examination revealed that color Doppler intrapulmonary flow (P = 0.0000043) and dynamic air bronchogram (P = 0.00024) were the most frequent HAP-related signs. The LUS-sCPIS (area under the curve = 0.77) yielded significantly better results than the sCPIS (area under the curve = 0.65; P = 0.004), while leukocyte count, temperature and chest radiography were not discriminating for HAP diagnosis.
DISCUSSION
CONCLUSIONS
Diagnosis of HAP is a daily challenge for the clinician managing patients on venoarterial ECMO. Lung ultrasound can be a valuable tool as the initial imaging modality for the diagnosis of pneumonia. Color Doppler intrapulmonary flow and dynamic air bronchogram appear to be particularly insightful for the diagnosis of HAP.
Identifiants
pubmed: 35596817
doi: 10.1186/s13613-022-01013-9
pii: 10.1186/s13613-022-01013-9
pmc: PMC9124275
doi:
Types de publication
Journal Article
Langues
eng
Pagination
43Informations de copyright
© 2022. The Author(s).
Références
Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42:889–96. https://doi.org/10.1007/s00134-016-4273-z .
doi: 10.1007/s00134-016-4273-z
pubmed: 26942446
Alba AC, Foroutan F, Buchan TA, Alvarez J, Kinsella A, Clark K, et al. Mortality in patients with cardiogenic shock supported with VA ECMO: a systematic review and meta-analysis evaluating the impact of etiology on 29,289 patients. J Heart Lung Transplant. 2021;40:260–8. https://doi.org/10.1016/j.healun.2021.01.009 .
doi: 10.1016/j.healun.2021.01.009
pubmed: 33551227
Schmidt M, Brechot N, Hariri S, Guiguet M, Luyt CE, Makri R, et al. Nosocomial infections in adult cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation. Clin Infect Dis. 2012;55:1633–41. https://doi.org/10.1093/cid/cis783 .
doi: 10.1093/cid/cis783
pubmed: 22990851
pmcid: 3888098
Bouglé A, Bombled C, Margetis D, Lebreton G, Vidal C, Coroir M, et al. Ventilator-associated pneumonia in patients assisted by veno-arterial extracorporeal membrane oxygenation support: epidemiology and risk factors of treatment failure. PLoS ONE. 2018;13: e0194976. https://doi.org/10.1371/journal.pone.0194976 .
doi: 10.1371/journal.pone.0194976
pubmed: 29652913
pmcid: 5898723
MacLaren G, Schlapbach LJ, Aiken AM. Nosocomial infections during extracorporeal membrane oxygenation in neonatal, pediatric, and adult patients: a comprehensive narrative review. Pediatr Crit Care Med. 2020;21:283–90. https://doi.org/10.1097/PCC.0000000000002190 .
doi: 10.1097/PCC.0000000000002190
pubmed: 31688809
Xirouchaki N, Magkanas E, Vaporidi K, Kondili E, Plataki M, Patrianakos A, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011;37:1488–93. https://doi.org/10.1007/s00134-011-2317-y .
doi: 10.1007/s00134-011-2317-y
pubmed: 21809107
Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby J-J. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100:9–15. https://doi.org/10.1097/00000542-200401000-00006 .
doi: 10.1097/00000542-200401000-00006
pubmed: 14695718
Reissig A, Copetti R. Lung ultrasound in community-acquired pneumonia and in interstitial lung diseases. Respir Int Rev Thorac Dis. 2014;87:179–89. https://doi.org/10.1159/000357449 .
doi: 10.1159/000357449
Orso D, Guglielmo N, Copetti R. Lung ultrasound in diagnosing pneumonia in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med. 2018;25:312–21. https://doi.org/10.1097/MEJ.0000000000000517 .
doi: 10.1097/MEJ.0000000000000517
pubmed: 29189351
Mongodi S, Bouhemad B, Mojoli F. Specific ultrasound signs may improve bedside early diagnosis of ventilator-associated pneumonia. Respir Care. 2019;64:1175–6. https://doi.org/10.4187/respcare.07137 .
doi: 10.4187/respcare.07137
pubmed: 31467159
Bouhemad B, Dransart-Rayé O, Mojoli F, Mongodi S. Lung ultrasound for diagnosis and monitoring of ventilator-associated pneumonia. Ann Transl Med. 2018;6:418. https://doi.org/10.21037/atm.2018.10.46 .
doi: 10.21037/atm.2018.10.46
pubmed: 30581826
pmcid: 6275403
Dureau P, Bouglé A, Melac AT, Ait Hamou N, Arbelot C, Ben Hassen K, et al. Colour Doppler ultrasound after major cardiac surgery improves diagnostic accuracy of the pulmonary infection score in acute respiratory failure: a prospective observational study. Eur J Anaesthesiol. 2019;36:676–82. https://doi.org/10.1097/EJA.0000000000001022 .
doi: 10.1097/EJA.0000000000001022
pubmed: 31107351
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61-111. https://doi.org/10.1093/cid/ciw353 .
doi: 10.1093/cid/ciw353
pubmed: 27418577
pmcid: 4981759
Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J. 2017. https://doi.org/10.1183/13993003.00582-2017 .
doi: 10.1183/13993003.00582-2017
pubmed: 29051270
Yuan A, Yang PC, Lee L, Wu HD, Kuo SH, Luh KT, et al. Reactive pulmonary artery vasoconstriction in pulmonary consolidation evaluated by color Doppler ultrasonography. Ultrasound Med Biol. 2000;26:49–56. https://doi.org/10.1016/s0301-5629(99)00118-0 .
doi: 10.1016/s0301-5629(99)00118-0
pubmed: 10687792
Bouhemad B, Barbry T, Soummer A, Lu Q, Rouby JJ. Doppler study of the effects of inhaled nitric oxide and intravenous almitrine on regional pulmonary blood flows in patients with acute lung injury. Minerva Anestesiol. 2014;80:517–25.
pubmed: 24299918
Caltabeloti F, Monsel A, Arbelot C, Brisson H, Lu Q, Gu W-J, et al. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Crit Care. 2014;18:R91. https://doi.org/10.1186/cc13859 .
doi: 10.1186/cc13859
pubmed: 24887155
pmcid: 4055974
Lichtenstein D, Mezière G, Seitz J. The dynamic air bronchogram. A lung ultrasound sign of alveolar consolidation ruling out atelectasis. Chest. 2009;135:1421–5. https://doi.org/10.1378/chest.08-2281 .
doi: 10.1378/chest.08-2281
pubmed: 19225063
Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31:676–82. https://doi.org/10.1097/01.CCM.0000055380.86458.1E .
doi: 10.1097/01.CCM.0000055380.86458.1E
pubmed: 12626968
Nashef SAM, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardio Thorac Surg. 2012;41:734–44. https://doi.org/10.1093/ejcts/ezs043 (discussion 744–745).
doi: 10.1093/ejcts/ezs043
Haaksma ME, Smit JM, Heldeweg MLA, Nooitgedacht JS, de Grooth HJ, Jonkman AH, et al. Extended lung ultrasound to differentiate between pneumonia and atelectasis in critically ill patients: a diagnostic accuracy study. Crit Care Med. 2021. https://doi.org/10.1097/CCM.0000000000005303 .
doi: 10.1097/CCM.0000000000005303
pubmed: 34582414
Görg C, Bert T. Transcutaneous colour Doppler sonography of lung consolidations: review and pictorial essay. Part 2: colour Doppler sonographic patterns of pulmonary consolidations. Ultraschall Med. 2004;25:285–91. https://doi.org/10.1055/s-2004-813091 .
doi: 10.1055/s-2004-813091
pubmed: 15300503
Tang BMP, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7. https://doi.org/10.1016/S1473-3099(07)70052-X .
doi: 10.1016/S1473-3099(07)70052-X
pubmed: 17317602
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49: e1063. https://doi.org/10.1097/CCM.0000000000005337 .
doi: 10.1097/CCM.0000000000005337
pubmed: 34605781
Nadziakiewicz P, Grochla M, Krauchuk A, Pióro A, Szyguła-Jurkiewicz B, Baca A, et al. Procalcitonin kinetics after heart transplantation and as a marker of infection in early postoperative course. Transplant Proc. 2020;52:2087–90. https://doi.org/10.1016/j.transproceed.2020.02.117 .
doi: 10.1016/j.transproceed.2020.02.117
pubmed: 32305202
Mathis G. Thoraxsonography-part II: peripheral pulmonary consolidation. Ultrasound Med Biol. 1997;23:1141–53. https://doi.org/10.1016/s0301-5629(97)00111-7 .
doi: 10.1016/s0301-5629(97)00111-7
pubmed: 9372562
Mongodi S, Bouhemad B, Iotti GA, Mojoli F. An ultrasonographic sign of intrapulmonary shunt. Intensive Care Med. 2016;42:912–3. https://doi.org/10.1007/s00134-015-4169-3 .
doi: 10.1007/s00134-015-4169-3
pubmed: 26650053
Arbelot C, Dexheimer Neto FL, Gao Y, Brisson H, Chunyao W, Lv J, et al. Lung ultrasound in emergency and critically ill patients: number of supervised exams to reach basic competence. Anesthesiology. 2020;132:899–907. https://doi.org/10.1097/ALN.0000000000003096 .
doi: 10.1097/ALN.0000000000003096
pubmed: 31917702
Mongodi S, Via G, Girard M, Rouquette I, Misset B, Braschi A, et al. Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest. 2016;149:969–80. https://doi.org/10.1016/j.chest.2015.12.012 .
doi: 10.1016/j.chest.2015.12.012
pubmed: 26836896
Gilliland S, Brainard J. Postoperative noninvasive ventilation following cardiothoracic surgery: a clinical primer and review of the literature. Semin Cardiothorac Vasc Anesth. 2015;19:302–8. https://doi.org/10.1177/1089253215572699 .
doi: 10.1177/1089253215572699
pubmed: 26660054
Bréchot N, Demondion P, Santi F, Lebreton G, Pham T, Dalakidis A, et al. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care. 2018;7:62–9. https://doi.org/10.1177/2048872617711169 .
doi: 10.1177/2048872617711169
pubmed: 28574276
He S, Chen B, Li W, Yan J, Chen L, Wang X, et al. Ventilator-associated pneumonia after cardiac surgery: a meta-analysis and systematic review. J Thorac Cardiovasc Surg. 2014;148:3148-3155 e1-5. https://doi.org/10.1016/j.jtcvs.2014.07.107 .
doi: 10.1016/j.jtcvs.2014.07.107
pubmed: 25240522
Aubron C, Cheng AC, Pilcher D, Leong T, Magrin G, Cooper DJ, et al. Infections acquired by adults who receive extracorporeal membrane oxygenation: risk factors and outcome. Infect Control Hosp Epidemiol. 2013;34:24–30. https://doi.org/10.1086/668439 .
doi: 10.1086/668439
pubmed: 23221189