Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain.
connectome
cortical gradients
cortical microstructure
functional connectivity
neuroimaging
Journal
Cerebral cortex (New York, N.Y. : 1991)
ISSN: 1460-2199
Titre abrégé: Cereb Cortex
Pays: United States
ID NLM: 9110718
Informations de publication
Date de publication:
20 02 2023
20 02 2023
Historique:
received:
16
11
2021
revised:
30
03
2022
accepted:
01
04
2022
pubmed:
22
5
2022
medline:
4
3
2023
entrez:
21
5
2022
Statut:
ppublish
Résumé
Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Sections du résumé
BACKGROUND
Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry.
METHODS
We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections.
RESULTS
Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture.
CONCLUSIONS
By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Identifiants
pubmed: 35596951
pii: 6590368
doi: 10.1093/cercor/bhac172
pmc: PMC9977370
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1782-1798Subventions
Organisme : CIHR
ID : FDN-154298
Pays : Canada
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Brain Connect. 2011;1(1):13-36
pubmed: 22432952
Neuroimage. 2022 Sep 5;263:119612
pubmed: 36070839
Cereb Cortex. 2012 Oct;22(10):2241-62
pubmed: 22047963
Nat Neurosci. 2018 Sep;21(9):1251-1259
pubmed: 30082915
Curr Biol. 2021 Oct 25;31(20):4436-4448.e5
pubmed: 34437842
Science. 2015 Jun 12;348(6240):1241-4
pubmed: 26068849
Neuroimage. 2014 Jun;93 Pt 2:165-75
pubmed: 23567887
Glia. 2014 Apr;62(4):608-22
pubmed: 24482245
Cereb Cortex. 2014 Sep;24(9):2258-67
pubmed: 23551922
Neuroimage. 2007 Aug 15;37(2):579-88
pubmed: 17604651
Neurology. 2017 Feb 21;88(8):734-742
pubmed: 28130467
J Neurosci. 2017 Jun 7;37(23):5594-5607
pubmed: 28450543
J Psychiatr Res. 2011 Feb;45(2):242-8
pubmed: 20619420
Nature. 2005 Feb 24;433(7028):895-900
pubmed: 15729348
Commun Biol. 2020 Mar 5;3(1):103
pubmed: 32139786
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10154-10159
pubmed: 30249658
Elife. 2020 Dec 17;9:
pubmed: 33331819
J Neurosci Methods. 2009 Dec 15;185(1):15-22
pubmed: 19737577
J Neurosci Methods. 2016 May 1;264:47-56
pubmed: 26945974
PLoS Biol. 2019 May 20;17(5):e3000284
pubmed: 31107870
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16480-5
pubmed: 23012402
Brain Struct Funct. 2015 Mar;220(2):1031-49
pubmed: 24399179
Nat Rev Neurosci. 2018 Nov;19(11):672-686
pubmed: 30305712
Neuroimage. 2010 Jan 15;49(2):1271-81
pubmed: 19819338
Hum Brain Mapp. 2022 Feb 15;43(3):885-901
pubmed: 34862695
Neuroimage. 2012 Jul 16;61(4):1129-42
pubmed: 22440648
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5868-73
pubmed: 22467830
Magn Reson Imaging. 2007 Jul;25(6):894-901
pubmed: 17490845
Cereb Cortex. 1997 Oct-Nov;7(7):635-46
pubmed: 9373019
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13281-6
pubmed: 21788513
Netw Neurosci. 2018 Nov 01;3(1):124-137
pubmed: 30793077
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
pubmed: 20176931
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9105-10
pubmed: 27457931
PLoS Comput Biol. 2006 Jul 21;2(7):e95
pubmed: 16848638
Science. 2000 Dec 22;290(5500):2319-23
pubmed: 11125149
Neuroscientist. 2006 Dec;12(6):512-23
pubmed: 17079517
Brain Struct Funct. 2019 Mar;224(2):925-935
pubmed: 30547311
Trends Cogn Sci. 2019 Jan;23(1):34-50
pubmed: 30455082
Hum Brain Mapp. 1999;8(4):272-84
pubmed: 10619420
Neuroinformatics. 2004;2(2):145-62
pubmed: 15319512
Ann Neurol. 1990 Nov;28(5):597-613
pubmed: 2260847
Nat Neurosci. 2007 Mar;10(3):331-9
pubmed: 17310248
Nat Commun. 2021 Jul 9;12(1):4237
pubmed: 34244483
Med Image Comput Comput Assist Interv. 2015 Oct;9350:313-320
pubmed: 26855977
Science. 2016 Jun 24;352(6293):1586-90
pubmed: 27339989
Neuroimage. 2021 Jan 1;224:117429
pubmed: 33038538
Nat Commun. 2022 May 9;13(1):2341
pubmed: 35534454
Sci Adv. 2022 Jun 3;8(22):eabm6127
pubmed: 35658036
Neuroimage. 2014 Jun;93 Pt 2:210-20
pubmed: 23603284
Neuroimage. 2018 Sep;178:540-551
pubmed: 29860082
J Neurosci. 2011 Aug 10;31(32):11597-616
pubmed: 21832190
Neuron. 2013 Feb 6;77(3):586-95
pubmed: 23395382
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13222-7
pubmed: 23878213
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2013 Oct 15;80:62-79
pubmed: 23684880
Neuron. 2013 Oct 2;80(1):184-97
pubmed: 24094111
Cereb Cortex. 2017 Feb 1;27(2):981-997
pubmed: 28184415
Nature. 2012 Sep 20;489(7416):391-399
pubmed: 22996553
Neuroimage. 2016 Jan 1;124(Pt A):379-393
pubmed: 26364864
Neuroimage. 1999 Feb;9(2):179-94
pubmed: 9931268
Epilepsia. 2020 Jun;61(6):1221-1233
pubmed: 32452574
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
pubmed: 19620724
Soc Cogn Affect Neurosci. 2017 Jul 1;12(7):1047-1062
pubmed: 28402561
Neural Plast. 2016;2016:7607924
pubmed: 27195153
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
J Physiol. 2011 Mar 1;589(Pt 5):1159-72
pubmed: 21224221
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579
pubmed: 27791099
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
pubmed: 15976020
Cereb Cortex. 2018 Sep 1;28(9):3095-3114
pubmed: 28981612
Front Cell Neurosci. 2020 Sep 29;14:581075
pubmed: 33192327
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
pubmed: 16945915
Sci Data. 2016 Jun 21;3:160044
pubmed: 27326542
Neuron. 2007 Oct 25;56(2):209-25
pubmed: 17964241
Trends Neurosci. 2018 Nov;41(11):775-788
pubmed: 29980393
J Neurosci. 2011 Nov 2;31(44):15775-86
pubmed: 22049421
Comput Biomed Res. 1996 Jun;29(3):162-73
pubmed: 8812068
Front Hum Neurosci. 2011 Feb 18;5:19
pubmed: 21373360
Elife. 2021 Nov 16;10:
pubmed: 34783653
Science. 2007 Aug 24;317(5841):1083-6
pubmed: 17717185
Brain Struct Funct. 2017 Jul;222(5):2173-2182
pubmed: 27807628
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4880-E4889
pubmed: 29739890
Neuroimage. 2022 May 1;251:118987
pubmed: 35151850
Nat Biotechnol. 2018 Jan;36(1):70-80
pubmed: 29227469
Neuroimage. 2013 Jan 15;65:1-12
pubmed: 23036446
J Magn Reson Imaging. 2007 Jul;26(1):41-51
pubmed: 17659567
Brain Res. 1997 May 30;758(1-2):69-82
pubmed: 9203535
Front Neuroanat. 2016 Nov 18;10:112
pubmed: 27917112
Trends Cogn Sci. 2018 Jan;22(1):21-31
pubmed: 29203085
Brain. 1998 Jun;121 ( Pt 6):1013-52
pubmed: 9648540
Science. 2013 Jun 21;340(6139):1472-5
pubmed: 23788795
PLoS Comput Biol. 2015 Mar 31;11(3):e1004137
pubmed: 25826753
Neuroimage. 2009 Oct 15;48(1):63-72
pubmed: 19573611
Annu Rev Neurosci. 2015 Jul 8;38:269-89
pubmed: 25897871
Elife. 2020 Nov 04;9:
pubmed: 33146610
Curr Biol. 2006 Nov 7;16(21):R910-4
pubmed: 17084684
Cereb Cortex. 2011 Jun;21(6):1254-72
pubmed: 21045004
Neuroimage. 2013 Jan 1;64:240-56
pubmed: 22926292
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1435-40
pubmed: 26772314
PLoS Comput Biol. 2007 Feb 2;3(2):e17
pubmed: 17274684
Trends Cogn Sci. 2013 Dec;17(12):666-82
pubmed: 24238796
Eur J Neurosci. 2017 Oct;46(8):2392-2405
pubmed: 28921934
J Comp Neurol. 1986 Oct 15;252(3):415-22
pubmed: 3793985
J Neurosci. 2010 Nov 24;30(47):15769-77
pubmed: 21106816
Cereb Cortex. 2013 Sep;23(9):2261-8
pubmed: 22826609
Nat Rev Neurosci. 2012 Apr 13;13(5):336-49
pubmed: 22498897
Brain Struct Funct. 2019 Apr;224(3):985-1008
pubmed: 30739157
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7432-7
pubmed: 15899969
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):51-8
pubmed: 24579123
Sci Data. 2022 Sep 15;9(1):569
pubmed: 36109562
J Neurosci. 2004 Jan 21;24(3):722-32
pubmed: 14736858
Neuroimage. 2020 Aug 15;217:116854
pubmed: 32334091
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
pubmed: 12506194
Cell. 2012 Apr 13;149(2):483-96
pubmed: 22500809
Neuroimage. 2013 Oct 15;80:527-40
pubmed: 23631991
Trends Cogn Sci. 2013 Dec;17(12):648-65
pubmed: 24210963
Glia. 2017 Nov;65(11):1777-1793
pubmed: 28787093
Neuroimage. 2014 Apr 15;90:449-68
pubmed: 24389422
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
Neuroimage. 2016 Jan 1;124(Pt A):1054-1064
pubmed: 26427642
PLoS Comput Biol. 2010 Jun 10;6(6):e1000808
pubmed: 20548945
J Neurophysiol. 2011 Sep;106(3):1125-65
pubmed: 21653723
Neuroimage. 1999 Feb;9(2):195-207
pubmed: 9931269
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573
Cereb Cortex. 2009 Oct;19(10):2209-29
pubmed: 19221144
Nat Methods. 2011 Jun 26;8(8):665-70
pubmed: 21706013
Curr Opin Behav Sci. 2017 Oct;17:41-50
pubmed: 29130061
Neuroimage. 2016 Jul 1;134:685-702
pubmed: 27083526