Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain.


Journal

Cerebral cortex (New York, N.Y. : 1991)
ISSN: 1460-2199
Titre abrégé: Cereb Cortex
Pays: United States
ID NLM: 9110718

Informations de publication

Date de publication:
20 02 2023
Historique:
received: 16 11 2021
revised: 30 03 2022
accepted: 01 04 2022
pubmed: 22 5 2022
medline: 4 3 2023
entrez: 21 5 2022
Statut: ppublish

Résumé

Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.

Sections du résumé

BACKGROUND
Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry.
METHODS
We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections.
RESULTS
Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture.
CONCLUSIONS
By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.

Identifiants

pubmed: 35596951
pii: 6590368
doi: 10.1093/cercor/bhac172
pmc: PMC9977370
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1782-1798

Subventions

Organisme : CIHR
ID : FDN-154298
Pays : Canada

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Références

Brain Connect. 2011;1(1):13-36
pubmed: 22432952
Neuroimage. 2022 Sep 5;263:119612
pubmed: 36070839
Cereb Cortex. 2012 Oct;22(10):2241-62
pubmed: 22047963
Nat Neurosci. 2018 Sep;21(9):1251-1259
pubmed: 30082915
Curr Biol. 2021 Oct 25;31(20):4436-4448.e5
pubmed: 34437842
Science. 2015 Jun 12;348(6240):1241-4
pubmed: 26068849
Neuroimage. 2014 Jun;93 Pt 2:165-75
pubmed: 23567887
Glia. 2014 Apr;62(4):608-22
pubmed: 24482245
Cereb Cortex. 2014 Sep;24(9):2258-67
pubmed: 23551922
Neuroimage. 2007 Aug 15;37(2):579-88
pubmed: 17604651
Neurology. 2017 Feb 21;88(8):734-742
pubmed: 28130467
J Neurosci. 2017 Jun 7;37(23):5594-5607
pubmed: 28450543
J Psychiatr Res. 2011 Feb;45(2):242-8
pubmed: 20619420
Nature. 2005 Feb 24;433(7028):895-900
pubmed: 15729348
Commun Biol. 2020 Mar 5;3(1):103
pubmed: 32139786
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10154-10159
pubmed: 30249658
Elife. 2020 Dec 17;9:
pubmed: 33331819
J Neurosci Methods. 2009 Dec 15;185(1):15-22
pubmed: 19737577
J Neurosci Methods. 2016 May 1;264:47-56
pubmed: 26945974
PLoS Biol. 2019 May 20;17(5):e3000284
pubmed: 31107870
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16480-5
pubmed: 23012402
Brain Struct Funct. 2015 Mar;220(2):1031-49
pubmed: 24399179
Nat Rev Neurosci. 2018 Nov;19(11):672-686
pubmed: 30305712
Neuroimage. 2010 Jan 15;49(2):1271-81
pubmed: 19819338
Hum Brain Mapp. 2022 Feb 15;43(3):885-901
pubmed: 34862695
Neuroimage. 2012 Jul 16;61(4):1129-42
pubmed: 22440648
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5868-73
pubmed: 22467830
Magn Reson Imaging. 2007 Jul;25(6):894-901
pubmed: 17490845
Cereb Cortex. 1997 Oct-Nov;7(7):635-46
pubmed: 9373019
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13281-6
pubmed: 21788513
Netw Neurosci. 2018 Nov 01;3(1):124-137
pubmed: 30793077
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
pubmed: 20176931
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9105-10
pubmed: 27457931
PLoS Comput Biol. 2006 Jul 21;2(7):e95
pubmed: 16848638
Science. 2000 Dec 22;290(5500):2319-23
pubmed: 11125149
Neuroscientist. 2006 Dec;12(6):512-23
pubmed: 17079517
Brain Struct Funct. 2019 Mar;224(2):925-935
pubmed: 30547311
Trends Cogn Sci. 2019 Jan;23(1):34-50
pubmed: 30455082
Hum Brain Mapp. 1999;8(4):272-84
pubmed: 10619420
Neuroinformatics. 2004;2(2):145-62
pubmed: 15319512
Ann Neurol. 1990 Nov;28(5):597-613
pubmed: 2260847
Nat Neurosci. 2007 Mar;10(3):331-9
pubmed: 17310248
Nat Commun. 2021 Jul 9;12(1):4237
pubmed: 34244483
Med Image Comput Comput Assist Interv. 2015 Oct;9350:313-320
pubmed: 26855977
Science. 2016 Jun 24;352(6293):1586-90
pubmed: 27339989
Neuroimage. 2021 Jan 1;224:117429
pubmed: 33038538
Nat Commun. 2022 May 9;13(1):2341
pubmed: 35534454
Sci Adv. 2022 Jun 3;8(22):eabm6127
pubmed: 35658036
Neuroimage. 2014 Jun;93 Pt 2:210-20
pubmed: 23603284
Neuroimage. 2018 Sep;178:540-551
pubmed: 29860082
J Neurosci. 2011 Aug 10;31(32):11597-616
pubmed: 21832190
Neuron. 2013 Feb 6;77(3):586-95
pubmed: 23395382
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13222-7
pubmed: 23878213
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2013 Oct 15;80:62-79
pubmed: 23684880
Neuron. 2013 Oct 2;80(1):184-97
pubmed: 24094111
Cereb Cortex. 2017 Feb 1;27(2):981-997
pubmed: 28184415
Nature. 2012 Sep 20;489(7416):391-399
pubmed: 22996553
Neuroimage. 2016 Jan 1;124(Pt A):379-393
pubmed: 26364864
Neuroimage. 1999 Feb;9(2):179-94
pubmed: 9931268
Epilepsia. 2020 Jun;61(6):1221-1233
pubmed: 32452574
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
pubmed: 19620724
Soc Cogn Affect Neurosci. 2017 Jul 1;12(7):1047-1062
pubmed: 28402561
Neural Plast. 2016;2016:7607924
pubmed: 27195153
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
J Physiol. 2011 Mar 1;589(Pt 5):1159-72
pubmed: 21224221
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579
pubmed: 27791099
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
pubmed: 15976020
Cereb Cortex. 2018 Sep 1;28(9):3095-3114
pubmed: 28981612
Front Cell Neurosci. 2020 Sep 29;14:581075
pubmed: 33192327
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
pubmed: 16945915
Sci Data. 2016 Jun 21;3:160044
pubmed: 27326542
Neuron. 2007 Oct 25;56(2):209-25
pubmed: 17964241
Trends Neurosci. 2018 Nov;41(11):775-788
pubmed: 29980393
J Neurosci. 2011 Nov 2;31(44):15775-86
pubmed: 22049421
Comput Biomed Res. 1996 Jun;29(3):162-73
pubmed: 8812068
Front Hum Neurosci. 2011 Feb 18;5:19
pubmed: 21373360
Elife. 2021 Nov 16;10:
pubmed: 34783653
Science. 2007 Aug 24;317(5841):1083-6
pubmed: 17717185
Brain Struct Funct. 2017 Jul;222(5):2173-2182
pubmed: 27807628
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4880-E4889
pubmed: 29739890
Neuroimage. 2022 May 1;251:118987
pubmed: 35151850
Nat Biotechnol. 2018 Jan;36(1):70-80
pubmed: 29227469
Neuroimage. 2013 Jan 15;65:1-12
pubmed: 23036446
J Magn Reson Imaging. 2007 Jul;26(1):41-51
pubmed: 17659567
Brain Res. 1997 May 30;758(1-2):69-82
pubmed: 9203535
Front Neuroanat. 2016 Nov 18;10:112
pubmed: 27917112
Trends Cogn Sci. 2018 Jan;22(1):21-31
pubmed: 29203085
Brain. 1998 Jun;121 ( Pt 6):1013-52
pubmed: 9648540
Science. 2013 Jun 21;340(6139):1472-5
pubmed: 23788795
PLoS Comput Biol. 2015 Mar 31;11(3):e1004137
pubmed: 25826753
Neuroimage. 2009 Oct 15;48(1):63-72
pubmed: 19573611
Annu Rev Neurosci. 2015 Jul 8;38:269-89
pubmed: 25897871
Elife. 2020 Nov 04;9:
pubmed: 33146610
Curr Biol. 2006 Nov 7;16(21):R910-4
pubmed: 17084684
Cereb Cortex. 2011 Jun;21(6):1254-72
pubmed: 21045004
Neuroimage. 2013 Jan 1;64:240-56
pubmed: 22926292
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1435-40
pubmed: 26772314
PLoS Comput Biol. 2007 Feb 2;3(2):e17
pubmed: 17274684
Trends Cogn Sci. 2013 Dec;17(12):666-82
pubmed: 24238796
Eur J Neurosci. 2017 Oct;46(8):2392-2405
pubmed: 28921934
J Comp Neurol. 1986 Oct 15;252(3):415-22
pubmed: 3793985
J Neurosci. 2010 Nov 24;30(47):15769-77
pubmed: 21106816
Cereb Cortex. 2013 Sep;23(9):2261-8
pubmed: 22826609
Nat Rev Neurosci. 2012 Apr 13;13(5):336-49
pubmed: 22498897
Brain Struct Funct. 2019 Apr;224(3):985-1008
pubmed: 30739157
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7432-7
pubmed: 15899969
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):51-8
pubmed: 24579123
Sci Data. 2022 Sep 15;9(1):569
pubmed: 36109562
J Neurosci. 2004 Jan 21;24(3):722-32
pubmed: 14736858
Neuroimage. 2020 Aug 15;217:116854
pubmed: 32334091
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
pubmed: 12506194
Cell. 2012 Apr 13;149(2):483-96
pubmed: 22500809
Neuroimage. 2013 Oct 15;80:527-40
pubmed: 23631991
Trends Cogn Sci. 2013 Dec;17(12):648-65
pubmed: 24210963
Glia. 2017 Nov;65(11):1777-1793
pubmed: 28787093
Neuroimage. 2014 Apr 15;90:449-68
pubmed: 24389422
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
Neuroimage. 2016 Jan 1;124(Pt A):1054-1064
pubmed: 26427642
PLoS Comput Biol. 2010 Jun 10;6(6):e1000808
pubmed: 20548945
J Neurophysiol. 2011 Sep;106(3):1125-65
pubmed: 21653723
Neuroimage. 1999 Feb;9(2):195-207
pubmed: 9931269
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573
Cereb Cortex. 2009 Oct;19(10):2209-29
pubmed: 19221144
Nat Methods. 2011 Jun 26;8(8):665-70
pubmed: 21706013
Curr Opin Behav Sci. 2017 Oct;17:41-50
pubmed: 29130061
Neuroimage. 2016 Jul 1;134:685-702
pubmed: 27083526

Auteurs

Yezhou Wang (Y)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Jessica Royer (J)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Bo-Yong Park (BY)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.
Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.

Reinder Vos de Wael (R)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Sara Larivière (S)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Shahin Tavakol (S)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Raul Rodriguez-Cruces (R)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Casey Paquola (C)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.
Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.

Seok-Jun Hong (SJ)

Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.
Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.

Daniel S Margulies (DS)

Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris.

Jonathan Smallwood (J)

Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada.

Sofie L Valk (SL)

Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.
Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany.

Alan C Evans (AC)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Boris C Bernhardt (BC)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH