Low-dose IL-2 prevents murine chronic cardiac allograft rejection: Role for IL-2-induced T regulatory cells and exosomes with PD-L1 and CD73.


Journal

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
ISSN: 1600-6143
Titre abrégé: Am J Transplant
Pays: United States
ID NLM: 100968638

Informations de publication

Date de publication:
09 2022
Historique:
revised: 12 05 2022
received: 07 12 2021
accepted: 12 05 2022
pubmed: 24 5 2022
medline: 1 9 2022
entrez: 23 5 2022
Statut: ppublish

Résumé

To determine the effects and immunological mechanisms of low-dose interleukin-2 (IL-2) in a murine model of chronic cardiac allograft rejection (BALB/c to C57BL/6) after costimulatory blockade consisting of MR1 (250 μg/ip day 0) and CTLA4-Ig (200 μg/ip day 2), we administered low-dose IL-2 (2000 IU/day) starting on posttransplant day 14 for 3 weeks. T regulatory (Treg) cell infiltration of the grafts was determined by immunohistochemistry; circulating exosomes by western blot and aldehyde bead flow cytometry; antibodies to donor MHC by immunofluorescent staining of donor cells; and antibodies to cardiac self-antigens (myosin, vimentin) by ELISA. We demonstrated that costimulation blockade after allogeneic heart transplantation induced circulating exosomes containing cardiac self-antigens and antibodies to both donor MHC and self-antigens, leading to chronic rejection by day 45. Treatment with low-dose IL-2 prolonged allograft survival (>100 days), prevented chronic rejection, and induced splenic and graft-infiltrating CD4+ CD25+ Foxp3 Treg cells by day 45 and circulating exosomes (Foxp3+) with PD-L1 and CD73. MicroRNA 142, associated with the TGFβ pathway, was significantly downregulated in exosomes from IL-2-treated mice. In conclusion, low-dose IL-2 delays rejection in a murine model of chronic cardiac allograft rejection and also induces graft-infiltrating Tregs and circulating exosomes with immunoregulatory molecules.

Identifiants

pubmed: 35603986
doi: 10.1111/ajt.17101
pii: S1600-6135(22)29912-2
doi:

Substances chimiques

Autoantigens 0
B7-H1 Antigen 0
Cd274 protein, mouse 0
Forkhead Transcription Factors 0
Interleukin-2 0
MicroRNAs 0
Mirn142 microRNA, mouse 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2180-2194

Subventions

Organisme : NIH HHS
ID : R21 AI123034
Pays : United States

Informations de copyright

© 2022 The American Society of Transplantation and the American Society of Transplant Surgeons.

Références

Costello JP, Mohanakumar T, Nath DS. Mechanisms of chronic cardiac allograft rejection. Tex Heart Inst J. 2013;40(4):395-399.
Oura T, Cosimi AB, Kawai T. Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clin Exp Immunol. 2017;189(2):190-196.
Van Keer JM, Van Aelst LNL, Rega F, et al. Long-term outcome of cardiac allograft vasculopathy: importance of the International Society for Heart and Lung Transplantation angiographic grading scale. J Heart Lung Transplant. 2019;38(11):1189-1196.
Akimova T, Kamath BM, Goebel JW, et al. Differing effects of rapamycin or calcineurin inhibitor on T-regulatory cells in pediatric liver and kidney transplant recipients. Am J Transplant. 2012;12(12):3449-3461.
Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Stron TB. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999;5(11):1298-1302.
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor à-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-1164.
Okeke EB, Uzonna JE. The pivotal role of regulatory T cells in the regulation of innate immune cells. Front Immunol. 2019;10:680.
Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8-27.
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-787.
Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol. 2018;9:883.
Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012;4(6):4.
Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17(11):1322-1333.
Moon BI, Kim TH, Seoh JY. Functional modulation of regulatory T cells by IL-2. PLoS One. 2015;10(11):e0141864.
Jeon PH, Ok KI. IL2 is required for functional maturation of regulatory T cells. Anim Cells Syst (Seoul). 2017;21(1):1-9.
Fan MY, Low JS, Tanimine N, et al. Differential roles of IL-2 signaling in developing versus mature Tregs. Cell Rep. 2018;25(5):1204-1213 e1204.
Grasshoff H, Comduhr S, Monne LR, et al. Low-dose IL-2 therapy in autoimmune and rheumatic diseases. Front Immunol. 2021;12:648408.
Curtis LM, Pavletic SZ. IL-2, the next best thing in chronic GVHD therapy? Blood. 2016;128(1):13-15.
Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host-disease. New Eng J Med. 2011;365:2055-2066.
Tahvildari M, Omoto M, Chen Y, et al. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation. 2016;100(3):525-532.
Webster KE, Walters S, Kohler RE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med. 2009;206(4):751-760.
Whitehouse G, Gray E, Mastoridis S, et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. PNAS. 2017;114(27):7083-7088.
Zhu P, Chen YF, Chen XP, et al. Mechanisms of survival prolongation of murine cardiac allografts using the treatment of CTLA4-Ig and MR1. Transplant Proc. 2008;40(5):1618-1624.
Young JS, Khiew SH, Yang J, et al. Successful treatment of T cell-mediated acute rejection with delayed CTLA4-Ig in mice. Front Immunol. 2017;8:1169.
Zheng XX, Markees TG, Hancock WW, et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. J Immunol. 1999;162(8):4983-4990.
Zhang T, Fresnay S, Welty E, et al. Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am J Transplant. 2011;11(8):1599-1609.
Fedoseyeva EV, Zhang F, Orr PL, Levin D, Buncke HJ, Benichou G. De novo autoimmunity to cardiac myosin after heart transplantation and its contribution to the rejection process. J Immunol. 1999;162(11):6836-6842.
Mahesh B, Leong HS, Nair KS, McCormack A, Sarathchandra P, Rose ML. Autoimmunity to vimentin potentiates graft vasculopathy in murine cardiac allografts. Transplantation. 2010;90(1):4-13.
Sharma M, Liu W, Perincheri S, Gunasekaran M, Mohanakumar T. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin. Am J Transplant. 2018;18(7):1626-1635.
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.
Bansal S, Sharma M, Ranjithkumar R, Mohanakumar T. The role of exosomes in allograft immunity. Cell Immunol. 2018;331:85-92.
Kennel PJ, Saha A, Maldonado DA, et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. J Heart Lung Transplant. 2018;37(3):409-417.
Habertheuer A, Korutla L, Rostami S, et al. Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. J Thorac Cardiovasc Surg. 2018;155(6):2479-2489.
Hu RW, Korutla L, Reddy S, et al. Circulating donor heart exosome profiling enables noninvasive detection of antibody-mediated rejection. Transplant Direct. 2020;6(11):e615.
Mastoridis S, Londono MC, Kurt A, et al. Impact of donor extracellular vesicle release on recipient cell "cross-dressing" following clinical liver and kidney transplantation. Am J Transplant. 2021;21(7):2387-2398.
Macedo C, Tran LM, Zahorchak AF, et al. Donor-derived regulatory dendritic cell infusion results in host cell cross-dressing and T cell subset changes in prospective living donor liver transplant recipients. Am J Transplant. 2021;21(7):2372-2386.
Burlingham W, Chapman W. Semi-direct alloantigen presentation detected in human liver but not kidney transplant recipients: implications for the future. Am J Transplant. 2021;21(7):2319-2320.
Poggio M, Hu T, Pai CC, et al. Suppression of Exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414-427 e413.
Bracamonte-Baran W, Florentin J, Zhou Y, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci USA. 2017;114(5):1099-1104.
Smyth LA, Ratnasothy K, Tsang JY, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430-2440.
Smith CR, Jaramillo A, Liu W, et al. CD4+ T cell recognition of a single discordant HLA-A2-transgenic molecule through the indirect antigen presentation pathway induces acute rejection of murine cardiac allografts. Transplantation. 2001;71(11):1640-1648.
Xu Z, Nayak D, Yang W, et al. Dysregulated MicroRNA expression and chronic lung allograft rejection in recipients with antibodies to donor HLA. Am J Transplant. 2015;15(7):1933-1947.
Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39(Database issue):D163-D169.
Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics. 2009;25(15):1991-1993.
Pietra BA, Wiseman A, Bolwerk A, Rizeq M, Gill RG. CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J Clin Invest. 2000;106(8):1003-1010.
Uehara M, Solhjou Z, Banouni N, et al. Ischemia augments alloimmune injury through IL-6-driven CD4(+) alloreactivity. Sci Rep. 2018;8(1):2461.
Fischbein MP, Yun J, Laks H, et al. Role of CD8+ lymphocytes in chronic rejection of transplanted hearts. J Thorac Cardiovasc Surg. 2002;123(4):803-809.
Edwards LA, Nowocin AK, Jafari NV, et al. Chronic rejection of cardiac allografts is associated with increased lymphatic flow and cellular trafficking. Circulation. 2018;137(5):488-503.
Schnickel GT, Whiting D, Hsieh GR, et al. CD8 lymphocytes are sufficient for the development of chronic rejection. Transplantation. 2004;78(11):1634-1639.
Benichou G, Yamada Y, Aoyama A, Madsen JC. Natural killer cells in rejection and tolerance of solid organ allografts. Curr Opin Organ Transplant. 2011;16(1):47-53.
Uehara S, Chase CM, Kitchens WH, et al. NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J Immunol. 2005;175:3424-3430.
Uehara S, Chase CM, Colvin RB, Russell PS, Madsen JC. Further evidence that NK cells may contribute to t he development of cardiac allograft vasculopathy. Transplant Proc. 2005;37(1):70-71.
Nakamura T, Nakao T, Ashihara E, Yoshimura N. Myeloid-derived suppressor cells recruit CD4(+)/Foxp3(+) regulatory T cells in a murine cardiac allograft. Transplant Proc. 2016;48(4):1275-1278.
Yin E, Matsuyama S, Uchiyama M, Kawai K, Niimi M. Graft protective effect and induction of CD4(+)Foxp3(+) cell by thrombomodulin on allograft arteriosclerosis in mice. J Cardiothorac Surg. 2018;13(1):48.
Sharma M, Ravichandran R, Bansal S, Bremner RM, Smith MA, Mohanakumar T. Tissue-associated self-antigens containing exosomes: role in allograft rejection. Hum Immunol. 2018;79(9):653-658.
Nath DS, Ilias Basha H, Tiriveedhi V, et al. Characterization of immune responses to cardiac self-antigens myosin and vimentin in human cardiac allograft recipients with antibody-mediated rejection and cardiac allograft vasculopathy. J Heart Lung Transplant. 2010;29(11):1277-1285.
Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. J Immunol. 2011;187(2):1023-1030.
Jurcevic S. Antivimentin antibodies are an independent predictor of transplant-associated coronary artery disease after cardiac transplantation. Transplantation. 2001;71:886-892.
Young RK, Dale B, Russell SD, Zachary AA, Tedford RJ. Incidence and early outcomes associated with pre-transplant antivimentin antibodies in the cardiac transplantation population. Clin Transplant. 2015;29(8):685-688.
Pilat N, Wiletel M, Weijler AM, et al. Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc Natl Acad Sci USA. 2019;116(27):13508-13516.
Nolte-'t Hoen EN, Wagenaar-Hilbers JP, Peters PJ, Gadella BM, van Eden W, Wauben MH. Uptake of membrane molecules from T cells endows antigen-presenting cells with novel functional properties. Eur J Immunol. 2004;34(11):3115-3125.
Agarwal A, Fanelli G, Letizia M, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014;5:555.
Grover P, Goel PN, Greene MI. Regulatory T cells: regulation of identity and function. Front Immunol. 2021;12:750542.
Hong CS, Sharma P, Yerneni SS, et al. Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep. 2017;7(1):14684.
Li X, Li JJ, Yang JY, et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One. 2012;7(8):e44045.
Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant. 2006;6(7):1541-1550.
Song J, Chen X, Wang M, Xing Y, Zheng Z, Hu S. Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Sci Rep. 2014;4:7583.
Song J, Huang J, Chen X, et al. Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart. Sci Rep. 2016;7:20077.
Boon RA, Vickers KC. Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(2):186-192.
Dewi IS, Celik S, Karlsson A, et al. Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res. 2017;113(5):440-452.
Mansoori B, Mohammadi A, Ghasabi M, et al. miR-142-3p as tumor suppressor miRNA in t he regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol. 2019;234(6):9816-9825.

Auteurs

Ranjithkumar Ravichandran (R)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Yoshihiro Itabashi (Y)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Timothy Fleming (T)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Sandhya Bansal (S)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Sara Bowen (S)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Christin Poulson (C)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Ankit Bharat (A)

Department of surgery, Northwestern University, Chicago, Illinois, USA.

Ross Bremner (R)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Michael Smith (M)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Thalachallour Mohanakumar (T)

Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH