Versatile strategy for homogeneous drying patterns of dispersed particles.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 May 2022
23 May 2022
Historique:
received:
23
02
2022
accepted:
04
05
2022
entrez:
23
5
2022
pubmed:
24
5
2022
medline:
24
5
2022
Statut:
epublish
Résumé
After spilling coffee, a tell-tale stain is left by the drying droplet. This universal phenomenon, known as the coffee ring effect, is observed independent of the dispersed material. However, for many technological processes such as coating techniques and ink-jet printing a uniform particle deposition is required and the coffee ring effect is a major drawback. Here, we present a simple and versatile strategy to achieve homogeneous drying patterns using surface-modified particle dispersions. High-molecular weight surface-active polymers that physisorb onto the particle surfaces provide enhanced steric stabilization and prevent accumulation and pinning at the droplet edge. In addition, in the absence of free polymer in the dispersion, the surface modification strongly enhances the particle adsorption to the air/liquid interface, where they experience a thermal Marangoni backflow towards the apex of the drop, leading to uniform particle deposition after drying. The method is independent of particle shape and applicable to a variety of commercial pigment particles and different dispersion media, demonstrating the practicality of this work for everyday processes.
Identifiants
pubmed: 35606364
doi: 10.1038/s41467-022-30497-z
pii: 10.1038/s41467-022-30497-z
pmc: PMC9126951
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2840Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : VO1824/6-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : VO1824/8-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : PE427/33-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 416229255
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P2SKP2_194953
Informations de copyright
© 2022. The Author(s).
Références
Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).
doi: 10.1038/39827
Hu, H. & Larson, R. G. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334–1344 (2002).
doi: 10.1021/jp0118322
Mampallil, D. & Eral, H. B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 252, 38–54 (2018).
pubmed: 29310771
doi: 10.1016/j.cis.2017.12.008
Larson, R. G. Re-shaping the coffee ring. Angew. Chem. - Int. Ed. 51, 2546–2548 (2012).
doi: 10.1002/anie.201108008
Layani, M. et al. Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS Nano 3, 3537–3542 (2009).
pubmed: 19928933
doi: 10.1021/nn901239z
Wong, T., Chen, T., Shen, X. & Ho, C. Nanochromatography driven by the coffee ring effect. Anal. Chem. 83, 1871–1873 (2011).
pubmed: 21288015
doi: 10.1021/ac102963x
Gulka, C. P. et al. Coffee rings as low-resource diagnostics: detection of the malaria biomarker plasmodium falciparum histidine-rich protein-ii using a surface-coupled ring of ni(ii)nta gold-plated polystyrene particles. ACS Appl. Mater. Interfaces 6, 6257–6263 (2014).
pubmed: 24758478
doi: 10.1021/am501452k
Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: how reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).
doi: 10.1016/j.elecom.2020.106867
Diao, Y., Shaw, L., Bao, Z. & Mannsfeld, S. C. B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014).
doi: 10.1039/C4EE00688G
Park, J. & Moon, J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22, 3506–3513 (2006).
pubmed: 16584221
doi: 10.1021/la053450j
Kuang, M., Wang, L. & Song, Y. Controllable printing droplets for high-resolution patterns. Adv. Mater. 26, 6950–6958 (2014).
pubmed: 24687946
doi: 10.1002/adma.201305416
Cummins, G. & Desmulliez, M. P. Y. Inkjet printing of conductive materials: a review. Circuit World 38, 193–213 (2012).
doi: 10.1108/03056121211280413
Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing-process and its applications. Adv. Mater. 22, 673–685 (2010).
pubmed: 20217769
doi: 10.1002/adma.200901141
Seo, C., Jang, D., Chae, J. & Shin, S. Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci. Rep. 7, 1–9 (2017).
Cui, L. et al. Suppression of the coffee ring effect by hydrosoluble polymer additives. ACS Appl. Mater. Interfaces 4, 2775–2780 (2012).
pubmed: 22545558
doi: 10.1021/am300423p
Senses, E., Black, M., Cunningham, T., Sukhishvili, S. A. & Akcora, P. Spatial ordering of colloids in a drying aqueous polymer droplet. Langmuir 29, 2588–2594 (2013).
pubmed: 23360324
doi: 10.1021/la400032u
Ooi, Y., Hanasaki, I., Mizumura, D. & Matsuda, Y. Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. Sci. Technol. Adv. Mater. 18, 316–324 (2017).
pubmed: 28567177
pmcid: 5439399
doi: 10.1080/14686996.2017.1314776
Li, H. et al. Preventing the coffee-ring effect and aggregate sedimentation by: in situ gelation of monodisperse materials. Chem. Sci. 9, 7596–7605 (2018).
pubmed: 30393519
pmcid: 6182772
doi: 10.1039/C8SC03302A
Pack, M., Hu, H., Kim, D. O., Yang, X. & Sun, Y. Colloidal drop deposition on porous substrates: competition among particle motion, evaporation, and infiltration. Langmuir 31, 7953–7961 (2015).
pubmed: 26132211
doi: 10.1021/acs.langmuir.5b01846
Hu, H. & Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006).
pubmed: 16599468
doi: 10.1021/jp0609232
Majumder, M. et al. Overcoming the ‘coffee-stain’ effect by compositional marangoni-flow-assisted drop-drying. J. Phys. Chem. B 116, 6536–6542 (2012).
pubmed: 22587569
doi: 10.1021/jp3009628
Still, T., Yunker, P. J. & Yodh, A. G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28, 4984–4988 (2012).
pubmed: 22369657
doi: 10.1021/la204928m
Sempels, W., De Dier, R., Mizuno, H., Hofkens, J. & Vermant, J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat. Commun. 4, 1–8 (2013).
doi: 10.1038/ncomms2746
Anyfantakis, M. & Baigl, D. Manipulating the coffee-ring effect: interactions at work. ChemPhysChem 16, 2726–2734 (2015).
pubmed: 26234430
doi: 10.1002/cphc.201500410
Crivoi, A. & Duan, F. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets. Phys. Rev. E 87, 042303 (2013).
doi: 10.1103/PhysRevE.87.042303
Dugyala, V. R. & Basavaraj, M. G. Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30, 8680–8686 (2014).
pubmed: 25003833
doi: 10.1021/la500803h
Anyfantakis, M., Geng, Z., Morel, M., Rudiuk, S. & Baigl, D. Modulation of the coffee-ring effect in particle/surfactant mixtures: The importance of particle-interface interactions. Langmuir 31, 4113–4120 (2015).
pubmed: 25797472
doi: 10.1021/acs.langmuir.5b00453
Anyfantakis, M. & Baigl, D. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness. Angew. Chem. Int. Ed. Engl. 53, 14301–14305 (2014).
doi: 10.1002/ange.201406903
Mayarani, M., Basavaraj, M. G. & Satapathy, D. K. Viscoelastic particle–laden interface inhibits coffee-ring formation. Langmuir 34, 14294–14301 (2018).
pubmed: 30383383
doi: 10.1021/acs.langmuir.8b02739
Bigioni, T. P. et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265–270 (2006).
pubmed: 16547519
doi: 10.1038/nmat1611
Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011).
pubmed: 21850105
doi: 10.1038/nature10344
Ho, C. C., Keller, A., Odell, J. A. & Ottewill, R. H. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993).
doi: 10.1007/BF00657391
Chibowski, S. Dependence of the adsorption behavior of polyvinyl alcohol at the polystyrene latex-solution interface on the molecular weight. J. Colloid Interface Sci. 134, 174–180 (1990).
doi: 10.1016/0021-9797(90)90264-O
Coertjens, S., Moldenaers, P., Vermant, J. & Isa, L. Contact angles of microellipsoids at fluid interfaces. Langmuir 30, 4289–4300 (2014).
pubmed: 24720442
doi: 10.1021/la500888u
Mayarani, M., Basavaraj, M. G. & Satapathy, D. K. Loosely packed monolayer coffee stains in dried drops of soft colloids. Nanoscale 9, 18798–18803 (2017).
pubmed: 29171611
doi: 10.1039/C7NR06732A
Horigome, K. & Suzuki, D. Drying mechanism of poly(N- isopropylacrylamide) microgel dispersions. Langmuir 28, 12962–12970 (2012).
pubmed: 22916861
doi: 10.1021/la302465w
Rauh, A. et al. Compression of hard core-soft shell nanoparticles at liquid-liquid interfaces: influence of the shell thickness. Soft Matter 13, 158–169 (2016).
pubmed: 27515818
doi: 10.1039/C6SM01020B
Rey, M., Fernandez-Rodriguez, M. A., Karg, M., Isa, L. & Vogel, N. Poly‑N‑isopropylacrylamide nanogels and microgels at fluid interfaces. Acc. Chem. Res. 53, 414–424 (2020).
pubmed: 31940173
doi: 10.1021/acs.accounts.9b00528
Menath, J. et al. Defined core–shell particles as the key to complex interfacial self-assembly., 118(52). Proc. Natl Acad. Sci. 52, 118 (2021).
Loudet, J. C., Alsayed, A. M., Zhang, J. & Yodh, A. G. Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 94, 2–5 (2005).
doi: 10.1103/PhysRevLett.94.018301
Lim, J. H. et al. Heterogeneous capillary interactions of interface-trapped ellipsoid particles using the trap-release method. Langmuir 34, 384–394 (2018).
pubmed: 29232143
doi: 10.1021/acs.langmuir.7b03882
Botto, L., Lewandowski, E. P., Cavallaro, M. & Stebe, K. J. Capillary interactions between anisotropic particles. Soft Matter 8, 9957–9971 (2012).
doi: 10.1039/c2sm25929j
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J. & Stone, H. A. Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 1–4 (2007).
doi: 10.1103/PhysRevLett.99.234502
Marin, A., Liepelt, R., Rossi, M. & Kähler, C. J. Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12, 1593–1600 (2016).
pubmed: 26659361
doi: 10.1039/C5SM02354H
Deegan, R. D. et al. Contact line deposits in an evaporating drop. Phys. Rev. E - Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 756–765 (2000).
Vogel, N., Retsch, M., Fustin, C. A., Del Campo, A. & Jonas, U. Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem. Rev. 115, 6265–6311 (2015).
pubmed: 26098223
doi: 10.1021/cr400081d
Winzen, S. et al. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7, 2992–3001 (2015).
pubmed: 25599336
doi: 10.1039/C4NR05982D
Prozeller, D., Morsbach, S. & Landfester, K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions. Nanoscale 11, 19265–19273 (2019).
pubmed: 31549702
doi: 10.1039/C9NR05790K
Chiad, K. et al. Isothermal titration calorimetry: a powerful technique to quantify interactions in polymer hybrid systems. Macromolecules 42, 7545–7552 (2009).
doi: 10.1021/ma9008912
Sauvage, F. et al. Dye-sensitized solar cells employing a single film of mesoporous TiO 2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420–4425 (2010).
pubmed: 20731428
doi: 10.1021/nn1010396
Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe 2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).
pubmed: 21416621
doi: 10.1002/cssc.201000416
Goodwin, J. W., Ottewill, R. H. & Pelton, R. Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic latices. Colloid Polym. Sci. 257, 61–69 (1979).
doi: 10.1007/BF01539018
Jardine, R. S. & Bartlett, P. Synthesis of non-aqueous fluorescent hard-sphere polymer colloids. Colloids Surf. A Physicochem. Eng. Asp. 211, 127–132 (2002).
doi: 10.1016/S0927-7757(02)00258-3
Harper, G. R. et al. Sterie stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro. Biomaterials 12, 695–700 (1991).
pubmed: 1742415
doi: 10.1016/0142-9612(91)90119-U
Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).
doi: 10.1016/0021-9797(68)90272-5
Encina, E. R., Distaso, M., Klupp Taylor, R. N. & Peukert, W. Synthesis of goethite α-FeOOH particles by air oxidation of ferrous hydroxide Fe(OH)2 suspensions: Insight on the formation mechanism. Cryst. Growth Des. 15, 194–203 (2015).
doi: 10.1021/cg501191h
Rey, M., Law, A. D., Buzza, D. M. A. & Vogel, N. Anisotropic self-assembly from isotropic colloidal building blocks. J. Am. Chem. Soc. 139, 17464–17473 (2017).
pubmed: 29136378
doi: 10.1021/jacs.7b08503
Antl, L. et al. The preparation of poly (methyl methacrylate) latices in non-aqueous media. Colloids Surf. 17, 67–78 (1986).
doi: 10.1016/0166-6622(86)80187-1
Kogan, M., Dibble, C. J., Rogers, R. E. & Solomon, M. J. Viscous solvent colloidal system for direct visualization of suspension structure, dynamics and rheology. J. Colloid Interface Sci. 318, 252–263 (2008).
pubmed: 18054033
doi: 10.1016/j.jcis.2007.10.064
Rey, M. et al. Isostructural solid–solid phase transition in monolayers of soft core–shell particles at fluid interfaces: structure and mechanics. Soft Matter 12, 3545–3557 (2016).
pubmed: 26948023
doi: 10.1039/C5SM03062E
Crocker, J. C. & Grier, D. G. When like charges attract: the effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897–1900 (1996).
pubmed: 10063199
doi: 10.1103/PhysRevLett.77.1897
Nontapot, K., Rastogi, V., Fagan, J. A. & Reipa, V. Size and density measurement of core–shell Si nanoparticles by analytical ultracentrifugation. Nanotechnology 24, 155701 (2013).
pubmed: 23518716
doi: 10.1088/0957-4484/24/15/155701
Uttinger, M. J. et al. New prospects for particle characterization using analytical centrifugation with sector-shaped centerpieces. Part. Part. Syst. Charact. 37, 2000108 (2020).
Walter, J., Thajudeen, T., Süß, S., Segets, D. & Peukert, W. New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation. Nanoscale 7, 6574–6587 (2015).
pubmed: 25789666
doi: 10.1039/C5NR00995B
Brown, P. H., Balbo, A., Zhao, H., Ebel, C. & Schuck, P. Density contrast sedimentation velocity for the determination of protein partial-specific volumes. PLoS One 6, e26221 (2011).
Fagan, J. A. et al. Analyzing surfactant structures on single-wall carbon nanotubes by analytical ultracentrifugation. ACS Nano 7, 3373–3387 (2013).
pubmed: 23530719
doi: 10.1021/nn4002165
Cho, C. H., Urquidi, J., Singh, S. & Robinson, G. W. Thermal offset viscosities of liquid H2O, D2O, and T2O. J. Phys. Chem. B 103, 1991–1994 (1999).
doi: 10.1021/jp9842953
Benoit, D. N. et al. Measuring the grafting density of nanoparticles in solution by analytical ultracentrifugation and total organic carbon analysis. Anal. Chem. 84, 9238–9245 (2012).
pubmed: 22967239
pmcid: 4538977
doi: 10.1021/ac301980a
Carney, R. P. et al. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat. Commun. 2, 335–338 (2011).
pubmed: 21654635
doi: 10.1038/ncomms1338