Multisensory task demands temporally extend the causal requirement for visual cortex in perception.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 05 2022
Historique:
received: 08 09 2021
accepted: 09 05 2022
entrez: 23 5 2022
pubmed: 24 5 2022
medline: 26 5 2022
Statut: epublish

Résumé

Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity.

Identifiants

pubmed: 35606448
doi: 10.1038/s41467-022-30600-4
pii: 10.1038/s41467-022-30600-4
pmc: PMC9126973
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2864

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).
pubmed: 24201278 doi: 10.1038/nature12654
Crochet, S., Lee, S.-H. & Petersen, C. C. H. Neural circuits for goal-directed sensorimotor transformations. Trends Neurosci. https://doi.org/10.1016/j.tins.2018.08.011 (2018).
Supèr, H., Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).
pubmed: 11224548 doi: 10.1038/85170
Cul, A. D., Baillet, S. & Dehaene, S. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLOS Biol. 5, e260 (2007).
pubmed: 17896866 pmcid: 1988856 doi: 10.1371/journal.pbio.0050260
DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).
pubmed: 22325196 pmcid: 3306444 doi: 10.1016/j.neuron.2012.01.010
Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).
pubmed: 8632824 doi: 10.1038/381520a0
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
pubmed: 26017442 doi: 10.1038/nature14539
Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).
pubmed: 17404214 pmcid: 1847457 doi: 10.1073/pnas.0700622104
Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).
pubmed: 21521609 doi: 10.1016/j.neuron.2011.03.018
Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).
pubmed: 11074267 doi: 10.1016/S0166-2236(00)01657-X
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
pubmed: 7605061 doi: 10.1146/annurev.ne.18.030195.001205
Pennartz, C. M. The Brain’s Representational Power: On Consciousness and the Integration of Modalities. (MIT Press, 2015).
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb. Cortex 10, 343–358 (2000).
pubmed: 10769247 doi: 10.1093/cercor/10.4.343
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cereb. Cortex 10, 359–370 (2000).
pubmed: 10769248 doi: 10.1093/cercor/10.4.359
Noesselt, T. et al. Delayed striate cortical activation during spatial attention. Neuron 35, 575–587 (2002).
pubmed: 12165478 doi: 10.1016/S0896-6273(02)00781-X
Martínez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).
pubmed: 10204544 doi: 10.1038/7274
Roelfsema, P. R. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29, 203–227 (2006).
pubmed: 16776584 doi: 10.1146/annurev.neuro.29.051605.112939
Schnabel, U. H. et al. Figure-ground perception in the awake mouse and neuronal activity elicited by figure-ground stimuli in primary visual cortex. Sci. Rep. 8, e18700 (2018).
doi: 10.1038/s41598-018-36087-8
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
pubmed: 10195184 doi: 10.1038/4580
Allman, J., Miezin, F. & McGuinness, E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985).
pubmed: 3885829 doi: 10.1146/annurev.ne.08.030185.002203
Boehler, C. N., Tsotsos, J. K., Schoenfeld, M. A., Heinze, H.-J. & Hopf, J.-M. The center-surround profile of the focus of attention arises from recurrent processing in visual cortex. Cereb. Cortex 19, 982–991 (2009).
pubmed: 18755778 doi: 10.1093/cercor/bhn139
Kirchberger, L. et al. The essential role of recurrent processing for figure-ground perception in mice. Sci. Adv. 7, eabe1833 (2021).
pubmed: 34193411 pmcid: 8245045 doi: 10.1126/sciadv.abe1833
Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).
pubmed: 28521139 pmcid: 5723385 doi: 10.1016/j.neuron.2017.04.017
Kaplan, H. S. & Zimmer, M. Brain-wide representations of ongoing behavior: a universal principle? Curr. Opin. Neurobiol. 64, 60–69 (2020).
pubmed: 32203874 doi: 10.1016/j.conb.2020.02.008
Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).
pubmed: 31551604 pmcid: 6768091 doi: 10.1038/s41593-019-0502-4
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255–255 (2019).
pubmed: 31000656 pmcid: 6525101 doi: 10.1126/science.aav7893
Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).
pubmed: 31776518 pmcid: 6913580 doi: 10.1038/s41586-019-1787-x
Salkoff, D. B., Zagha, E., McCarthy, E. & McCormick, D. A. Movement and performance explain widespread cortical activity in a visual detection task. Cereb. Cortex 30, 421–437 (2020).
pubmed: 31711133 doi: 10.1093/cercor/bhz206
Manita, S. et al. A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316 (2015).
pubmed: 26004915 doi: 10.1016/j.neuron.2015.05.006
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. H. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671 (2013).
pubmed: 24097038 doi: 10.1038/nn.3532
Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).
pubmed: 29659352 pmcid: 5902162 doi: 10.7554/eLife.34044
Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).
pubmed: 8598908 doi: 10.1038/380069a0
Pennartz, C. M. A. Identification and integration of sensory modalities: Neural basis and relation to consciousness. Conscious. Cogn. 18, 718–739 (2009).
pubmed: 19409812 doi: 10.1016/j.concog.2009.03.003
Meijer, G. T., Mertens, P. E. C., Pennartz, C. M. A., Olcese, U. & Lansink, C. S. The circuit architecture of cortical multisensory processing: Distinct functions jointly operating within a common anatomical network. Prog. Neurobiol. 174, 1–15 (2019).
pubmed: 30677428 doi: 10.1016/j.pneurobio.2019.01.004
Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).
pubmed: 17600525 doi: 10.1146/annurev.neuro.29.051605.113038
Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26, 8965–8975 (2006).
pubmed: 16943552 pmcid: 6675324 doi: 10.1523/JNEUROSCI.1655-06.2006
Pennartz, C. M. A., Dora, S., Muckli, L. & Lorteije, J. A. M. Towards a unified view on pathways and functions of neural recurrent processing. Trends Neurosci. 42, 589–603 (2019).
pubmed: 31399289 doi: 10.1016/j.tins.2019.07.005
Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 360, 815–836 (2005).
doi: 10.1098/rstb.2005.1622
Shepard, R. N. Circularity in judgments of relative pitch. J. Acoust. Soc. Am. 36, 2346–2353 (1964).
doi: 10.1121/1.1919362
Sridharan, D., Steinmetz, N. A., Moore, T. & Knudsen, E. I. Distinguishing bias from sensitivity effects in multialternative detection tasks. J. Vis. 14, 16–16 (2014).
pubmed: 25146574 pmcid: 4141865 doi: 10.1167/14.9.16
Hanson, J. V. M., Whitaker, D. & Heron, J. Preferential processing of tactile events under conditions of divided attention. Neuroreport 20, 1392–1396 (2009).
pubmed: 19738497 pmcid: 3364445 doi: 10.1097/WNR.0b013e3283319e25
Park, I. M., Meister, M. L. R., Huk, A. C., & Pillow, J. W. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395–1403 (2014).
pubmed: 25174005 pmcid: 4176983 doi: 10.1038/nn.3800
Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).
pubmed: 28723889 pmcid: 5859334 doi: 10.1038/nature23020
Rossi-Pool, R. et al. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc. Natl Acad. Sci. 113, E7966–E7975 (2016).
pubmed: 27872293 pmcid: 5150418 doi: 10.1073/pnas.1618196113
Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics. xi, 455 (John Wiley, 1966).
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653 doi: 10.1038/nn.2467
Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).
pubmed: 23850594 doi: 10.1016/j.neuron.2013.06.010
Glickfeld, L. L., Histed, M. H. & Maunsell, J. H. R. Mouse primary visual cortex is used to detect both orientation and contrast changes. J. Neurosci. 33, 19416–19422 (2013).
pubmed: 24336708 pmcid: 3858618 doi: 10.1523/JNEUROSCI.3560-13.2013
Zatka-Haas, P., Steinmetz, N. A., Carandini, M. & Harris, K. D. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 10, e63163 (2021).
pubmed: 34328419 pmcid: 8324299 doi: 10.7554/eLife.63163
Zagha, E., Casale, A. E., Sachdev, R. N. S., McGinley, M. J. & McCormick, D. A. Motor cortex feedback influences sensory processing by modulating network state. Neuron 79, 567–578 (2013).
pubmed: 23850595 pmcid: 3742632 doi: 10.1016/j.neuron.2013.06.008
Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).
pubmed: 8022482 doi: 10.1038/370140a0
Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).
pubmed: 27145916 pmcid: 5137197 doi: 10.1146/annurev-neuro-070815-013851
Montijn, J. S., Meijer, G. T., Lansink, C. S. & Pennartz, C. M. A. Population-level neural codes are robust to single-neuron variability from a multidimensional coding perspective. Cell Rep. 16, 2486–2498 (2016).
pubmed: 27545876 doi: 10.1016/j.celrep.2016.07.065
Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018).
pubmed: 29371470 pmcid: 6571104 doi: 10.1126/science.aao0284
Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).
pubmed: 19915566 pmcid: 2820564 doi: 10.1038/nn.2439
Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).
pubmed: 21709677 pmcid: 3586814 doi: 10.1038/nn.2842
Ecker, A. S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).
pubmed: 20110506 doi: 10.1126/science.1179867
Hansen, B. J., Chelaru, M. I. & Dragoi, V. Correlated variability in laminar cortical circuits. Neuron 76, 590–602 (2012).
pubmed: 23141070 doi: 10.1016/j.neuron.2012.08.029
Meijer, G. T. et al. Neural correlates of multisensory detection behavior: comparison of primary and higher-order visual cortex. Cell Rep. 31, 107636 (2020).
pubmed: 32402272 doi: 10.1016/j.celrep.2020.107636
Beaman, C. B., Eagleman, S. L. & Dragoi, V. Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state. Nat. Commun. 8, 1308 (2017).
pubmed: 29101393 pmcid: 5670198 doi: 10.1038/s41467-017-01030-4
Lee, C. C. Y., Diamond, M. E. & Arabzadeh, E. Sensory prioritization in rats: behavioral performance and neuronal correlates. J. Soc. Neurosci. 36, 3243–3253 (2016).
doi: 10.1523/JNEUROSCI.3636-15.2016
Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).
pubmed: 26503050 pmcid: 4626291 doi: 10.1038/nature15398
Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824.e9 (2019).
pubmed: 31564591 pmcid: 7036751 doi: 10.1016/j.neuron.2019.08.025
Silvanto, J., Cowey, A., Lavie, N. & Walsh, V. Striate cortex (V1) activity gates awareness of motion. Nat. Neurosci. 8, 143–144 (2005).
pubmed: 15643428 doi: 10.1038/nn1379
Krauzlis, R. J., Bogadhi, A. R., Herman, J. P. & Bollimunta, A. Selective attention without a neocortex. Cortex 102, 161–175 (2018).
pubmed: 28958417 doi: 10.1016/j.cortex.2017.08.026
Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).
pubmed: 26649821 doi: 10.1038/nature16442
Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence accumulator. Curr. Opin. Neurobiol. 37, 149–157 (2016).
pubmed: 26878969 pmcid: 5777584 doi: 10.1016/j.conb.2016.01.003
Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).
pubmed: 25600270 pmcid: 4835184 doi: 10.1038/nature14066
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432.e5 (2017).
pubmed: 28910624 doi: 10.1016/j.neuron.2017.08.036
Schneider, D. M. & Mooney, R. How movement modulates hearing. Annu. Rev. Neurosci. 41, 553–572 (2018).
pubmed: 29986164 pmcid: 6201761 doi: 10.1146/annurev-neuro-072116-031215
Li, Y., Ibrahim, L. A., Liu, B., Zhang, L. I. & Tao, H. W. Linear transformation of thalamocortical input by intracortical excitation. Nat. Neurosci. 16, 1324–1330 (2013).
pubmed: 23933750 pmcid: 3855439 doi: 10.1038/nn.3494
Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).
pubmed: 23933748 pmcid: 3774518 doi: 10.1038/nn.3488
Fong, M., Mitchell, D. E., Duffy, K. R. & Bear, M. F. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proc. Natl Acad. Sci. 113, 14139–14144 (2016).
pubmed: 27856748 pmcid: 5150384 doi: 10.1073/pnas.1613279113
Issa, J. B. et al. Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83, 944–959 (2014).
pubmed: 25088366 pmcid: 4242551 doi: 10.1016/j.neuron.2014.07.009
Goltstein, P. M., Coffey, E. B. J., Roelfsema, P. R. & Pennartz, C. M. A. In vivo two-photon Ca2+ imaging reveals selective reward effects on stimulus-specific assemblies in mouse visual cortex. J. Neurosci. 33, 11540–11555 (2013).
pubmed: 23843524 pmcid: 6618686 doi: 10.1523/JNEUROSCI.1341-12.2013
Meijer, G. T., Pie, J. L., Dolman, T. L., Pennartz, C. M. A. & Lansink, C. S. Audiovisual integration enhances stimulus detection performance in mice. Front. Behav. Neurosci. 12, e231 (2018).
Heesy, C. P. On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 281A, 1104–1110 (2004).
doi: 10.1002/ar.a.20116
Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).
pubmed: 26166563 pmcid: 4512881 doi: 10.1016/j.celrep.2015.06.036
Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
pubmed: 26974951 pmcid: 4817237 doi: 10.1038/nn.4268
Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005).
pubmed: 15680687 doi: 10.1016/j.neuroscience.2004.09.066
Vinck, M. et al. Cell-type and State-dependent synchronization among rodent somatosensory, visual, perirhinal cortex, and hippocampus CA1. Front. Syst. Neurosci. 9, e187 (2016).
doi: 10.3389/fnsys.2015.00187
Bos, J. J. et al. Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat. Commun. 8, 15602 (2017).
pubmed: 28548084 pmcid: 5458559 doi: 10.1038/ncomms15602
Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron https://doi.org/10.1016/j.neuron.2018.12.009 (2019).
Oude Lohuis, M. N., Canton, A. C., Pennartz, C. M. A. & Olcese, U. Higher order visual areas enhance stimulus responsiveness in mouse primary visual cortex. Cereb. Cortex https://doi.org/10.1093/cercor/bhab414 (2021).
Montijn, J. S., Goltstein, P. M. & Pennartz, C. M. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns. eLife 4, e10163 (2015).
pubmed: 26646184 pmcid: 4739777 doi: 10.7554/eLife.10163
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430 doi: 10.1038/s41593-018-0209-y
Lauer, S. M., Schneeweiß, U., Brecht, M. & Ray, S. Visualization of cortical modules in flattened mammalian cortices. J. Vis. Exp. e56992 https://doi.org/10.3791/56992 (2018).
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. (Gulf Professional Publishing, 2004).
Gămănuţ, R. et al. The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97, 698–715.e10 (2018).
pubmed: 29420935 pmcid: 5958229 doi: 10.1016/j.neuron.2017.12.037
Burgess, C. P. et al. High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell Rep. 20, 2513–2524 (2017).
pubmed: 28877482 pmcid: 5603732 doi: 10.1016/j.celrep.2017.08.047
McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).
pubmed: 26074005 pmcid: 4631312 doi: 10.1016/j.neuron.2015.05.038
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728 pmcid: 2929880 doi: 10.18637/jss.v033.i01
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bos, J. J. et al. Multiplexing of information about self and others in hippocampal ensembles. Cell Rep. 29, 3859–3871.e6 (2019).
pubmed: 31851919 doi: 10.1016/j.celrep.2019.11.057
Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).
pubmed: 24671065 doi: 10.1038/nn.3648
Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).
pubmed: 24392894 doi: 10.1162/jocn_a_00562

Auteurs

Matthijs N Oude Lohuis (MN)

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.

Jean L Pie (JL)

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU Amsterdam, Amsterdam, The Netherlands.

Pietro Marchesi (P)

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.

Jorrit S Montijn (JS)

Cortical Structure and Function, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.

Christiaan P J de Kock (CPJ)

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU Amsterdam, Amsterdam, The Netherlands.

Cyriel M A Pennartz (CMA)

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.

Umberto Olcese (U)

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. u.olcese@uva.nl.
Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands. u.olcese@uva.nl.

Articles similaires

Animals Optogenetics Visual Cortex Neurons Mice
Animals Entorhinal Cortex Interneurons Parvalbumins Mice
Humans Aged Middle Aged Adult Attention

Phonology facilitates deeply opaque logographic writing.

Mio Yokoi, Kouji Takano, Kimihiro Nakamura
1.00
Humans Phonetics Writing Male Female

Classifications MeSH