Multisensory task demands temporally extend the causal requirement for visual cortex in perception.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 05 2022
23 05 2022
Historique:
received:
08
09
2021
accepted:
09
05
2022
entrez:
23
5
2022
pubmed:
24
5
2022
medline:
26
5
2022
Statut:
epublish
Résumé
Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity.
Identifiants
pubmed: 35606448
doi: 10.1038/s41467-022-30600-4
pii: 10.1038/s41467-022-30600-4
pmc: PMC9126973
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2864Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).
pubmed: 24201278
doi: 10.1038/nature12654
Crochet, S., Lee, S.-H. & Petersen, C. C. H. Neural circuits for goal-directed sensorimotor transformations. Trends Neurosci. https://doi.org/10.1016/j.tins.2018.08.011 (2018).
Supèr, H., Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).
pubmed: 11224548
doi: 10.1038/85170
Cul, A. D., Baillet, S. & Dehaene, S. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLOS Biol. 5, e260 (2007).
pubmed: 17896866
pmcid: 1988856
doi: 10.1371/journal.pbio.0050260
DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).
pubmed: 22325196
pmcid: 3306444
doi: 10.1016/j.neuron.2012.01.010
Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).
pubmed: 8632824
doi: 10.1038/381520a0
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
pubmed: 26017442
doi: 10.1038/nature14539
Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).
pubmed: 17404214
pmcid: 1847457
doi: 10.1073/pnas.0700622104
Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).
pubmed: 21521609
doi: 10.1016/j.neuron.2011.03.018
Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).
pubmed: 11074267
doi: 10.1016/S0166-2236(00)01657-X
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
pubmed: 7605061
doi: 10.1146/annurev.ne.18.030195.001205
Pennartz, C. M. The Brain’s Representational Power: On Consciousness and the Integration of Modalities. (MIT Press, 2015).
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb. Cortex 10, 343–358 (2000).
pubmed: 10769247
doi: 10.1093/cercor/10.4.343
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cereb. Cortex 10, 359–370 (2000).
pubmed: 10769248
doi: 10.1093/cercor/10.4.359
Noesselt, T. et al. Delayed striate cortical activation during spatial attention. Neuron 35, 575–587 (2002).
pubmed: 12165478
doi: 10.1016/S0896-6273(02)00781-X
Martínez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).
pubmed: 10204544
doi: 10.1038/7274
Roelfsema, P. R. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29, 203–227 (2006).
pubmed: 16776584
doi: 10.1146/annurev.neuro.29.051605.112939
Schnabel, U. H. et al. Figure-ground perception in the awake mouse and neuronal activity elicited by figure-ground stimuli in primary visual cortex. Sci. Rep. 8, e18700 (2018).
doi: 10.1038/s41598-018-36087-8
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
pubmed: 10195184
doi: 10.1038/4580
Allman, J., Miezin, F. & McGuinness, E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985).
pubmed: 3885829
doi: 10.1146/annurev.ne.08.030185.002203
Boehler, C. N., Tsotsos, J. K., Schoenfeld, M. A., Heinze, H.-J. & Hopf, J.-M. The center-surround profile of the focus of attention arises from recurrent processing in visual cortex. Cereb. Cortex 19, 982–991 (2009).
pubmed: 18755778
doi: 10.1093/cercor/bhn139
Kirchberger, L. et al. The essential role of recurrent processing for figure-ground perception in mice. Sci. Adv. 7, eabe1833 (2021).
pubmed: 34193411
pmcid: 8245045
doi: 10.1126/sciadv.abe1833
Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).
pubmed: 28521139
pmcid: 5723385
doi: 10.1016/j.neuron.2017.04.017
Kaplan, H. S. & Zimmer, M. Brain-wide representations of ongoing behavior: a universal principle? Curr. Opin. Neurobiol. 64, 60–69 (2020).
pubmed: 32203874
doi: 10.1016/j.conb.2020.02.008
Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).
pubmed: 31551604
pmcid: 6768091
doi: 10.1038/s41593-019-0502-4
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255–255 (2019).
pubmed: 31000656
pmcid: 6525101
doi: 10.1126/science.aav7893
Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).
pubmed: 31776518
pmcid: 6913580
doi: 10.1038/s41586-019-1787-x
Salkoff, D. B., Zagha, E., McCarthy, E. & McCormick, D. A. Movement and performance explain widespread cortical activity in a visual detection task. Cereb. Cortex 30, 421–437 (2020).
pubmed: 31711133
doi: 10.1093/cercor/bhz206
Manita, S. et al. A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316 (2015).
pubmed: 26004915
doi: 10.1016/j.neuron.2015.05.006
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. H. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671 (2013).
pubmed: 24097038
doi: 10.1038/nn.3532
Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).
pubmed: 29659352
pmcid: 5902162
doi: 10.7554/eLife.34044
Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).
pubmed: 8598908
doi: 10.1038/380069a0
Pennartz, C. M. A. Identification and integration of sensory modalities: Neural basis and relation to consciousness. Conscious. Cogn. 18, 718–739 (2009).
pubmed: 19409812
doi: 10.1016/j.concog.2009.03.003
Meijer, G. T., Mertens, P. E. C., Pennartz, C. M. A., Olcese, U. & Lansink, C. S. The circuit architecture of cortical multisensory processing: Distinct functions jointly operating within a common anatomical network. Prog. Neurobiol. 174, 1–15 (2019).
pubmed: 30677428
doi: 10.1016/j.pneurobio.2019.01.004
Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).
pubmed: 17600525
doi: 10.1146/annurev.neuro.29.051605.113038
Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26, 8965–8975 (2006).
pubmed: 16943552
pmcid: 6675324
doi: 10.1523/JNEUROSCI.1655-06.2006
Pennartz, C. M. A., Dora, S., Muckli, L. & Lorteije, J. A. M. Towards a unified view on pathways and functions of neural recurrent processing. Trends Neurosci. 42, 589–603 (2019).
pubmed: 31399289
doi: 10.1016/j.tins.2019.07.005
Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 360, 815–836 (2005).
doi: 10.1098/rstb.2005.1622
Shepard, R. N. Circularity in judgments of relative pitch. J. Acoust. Soc. Am. 36, 2346–2353 (1964).
doi: 10.1121/1.1919362
Sridharan, D., Steinmetz, N. A., Moore, T. & Knudsen, E. I. Distinguishing bias from sensitivity effects in multialternative detection tasks. J. Vis. 14, 16–16 (2014).
pubmed: 25146574
pmcid: 4141865
doi: 10.1167/14.9.16
Hanson, J. V. M., Whitaker, D. & Heron, J. Preferential processing of tactile events under conditions of divided attention. Neuroreport 20, 1392–1396 (2009).
pubmed: 19738497
pmcid: 3364445
doi: 10.1097/WNR.0b013e3283319e25
Park, I. M., Meister, M. L. R., Huk, A. C., & Pillow, J. W. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395–1403 (2014).
pubmed: 25174005
pmcid: 4176983
doi: 10.1038/nn.3800
Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).
pubmed: 28723889
pmcid: 5859334
doi: 10.1038/nature23020
Rossi-Pool, R. et al. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc. Natl Acad. Sci. 113, E7966–E7975 (2016).
pubmed: 27872293
pmcid: 5150418
doi: 10.1073/pnas.1618196113
Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics. xi, 455 (John Wiley, 1966).
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653
doi: 10.1038/nn.2467
Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).
pubmed: 23850594
doi: 10.1016/j.neuron.2013.06.010
Glickfeld, L. L., Histed, M. H. & Maunsell, J. H. R. Mouse primary visual cortex is used to detect both orientation and contrast changes. J. Neurosci. 33, 19416–19422 (2013).
pubmed: 24336708
pmcid: 3858618
doi: 10.1523/JNEUROSCI.3560-13.2013
Zatka-Haas, P., Steinmetz, N. A., Carandini, M. & Harris, K. D. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 10, e63163 (2021).
pubmed: 34328419
pmcid: 8324299
doi: 10.7554/eLife.63163
Zagha, E., Casale, A. E., Sachdev, R. N. S., McGinley, M. J. & McCormick, D. A. Motor cortex feedback influences sensory processing by modulating network state. Neuron 79, 567–578 (2013).
pubmed: 23850595
pmcid: 3742632
doi: 10.1016/j.neuron.2013.06.008
Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).
pubmed: 8022482
doi: 10.1038/370140a0
Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).
pubmed: 27145916
pmcid: 5137197
doi: 10.1146/annurev-neuro-070815-013851
Montijn, J. S., Meijer, G. T., Lansink, C. S. & Pennartz, C. M. A. Population-level neural codes are robust to single-neuron variability from a multidimensional coding perspective. Cell Rep. 16, 2486–2498 (2016).
pubmed: 27545876
doi: 10.1016/j.celrep.2016.07.065
Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018).
pubmed: 29371470
pmcid: 6571104
doi: 10.1126/science.aao0284
Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).
pubmed: 19915566
pmcid: 2820564
doi: 10.1038/nn.2439
Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).
pubmed: 21709677
pmcid: 3586814
doi: 10.1038/nn.2842
Ecker, A. S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).
pubmed: 20110506
doi: 10.1126/science.1179867
Hansen, B. J., Chelaru, M. I. & Dragoi, V. Correlated variability in laminar cortical circuits. Neuron 76, 590–602 (2012).
pubmed: 23141070
doi: 10.1016/j.neuron.2012.08.029
Meijer, G. T. et al. Neural correlates of multisensory detection behavior: comparison of primary and higher-order visual cortex. Cell Rep. 31, 107636 (2020).
pubmed: 32402272
doi: 10.1016/j.celrep.2020.107636
Beaman, C. B., Eagleman, S. L. & Dragoi, V. Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state. Nat. Commun. 8, 1308 (2017).
pubmed: 29101393
pmcid: 5670198
doi: 10.1038/s41467-017-01030-4
Lee, C. C. Y., Diamond, M. E. & Arabzadeh, E. Sensory prioritization in rats: behavioral performance and neuronal correlates. J. Soc. Neurosci. 36, 3243–3253 (2016).
doi: 10.1523/JNEUROSCI.3636-15.2016
Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).
pubmed: 26503050
pmcid: 4626291
doi: 10.1038/nature15398
Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824.e9 (2019).
pubmed: 31564591
pmcid: 7036751
doi: 10.1016/j.neuron.2019.08.025
Silvanto, J., Cowey, A., Lavie, N. & Walsh, V. Striate cortex (V1) activity gates awareness of motion. Nat. Neurosci. 8, 143–144 (2005).
pubmed: 15643428
doi: 10.1038/nn1379
Krauzlis, R. J., Bogadhi, A. R., Herman, J. P. & Bollimunta, A. Selective attention without a neocortex. Cortex 102, 161–175 (2018).
pubmed: 28958417
doi: 10.1016/j.cortex.2017.08.026
Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).
pubmed: 26649821
doi: 10.1038/nature16442
Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence accumulator. Curr. Opin. Neurobiol. 37, 149–157 (2016).
pubmed: 26878969
pmcid: 5777584
doi: 10.1016/j.conb.2016.01.003
Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).
pubmed: 25600270
pmcid: 4835184
doi: 10.1038/nature14066
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432.e5 (2017).
pubmed: 28910624
doi: 10.1016/j.neuron.2017.08.036
Schneider, D. M. & Mooney, R. How movement modulates hearing. Annu. Rev. Neurosci. 41, 553–572 (2018).
pubmed: 29986164
pmcid: 6201761
doi: 10.1146/annurev-neuro-072116-031215
Li, Y., Ibrahim, L. A., Liu, B., Zhang, L. I. & Tao, H. W. Linear transformation of thalamocortical input by intracortical excitation. Nat. Neurosci. 16, 1324–1330 (2013).
pubmed: 23933750
pmcid: 3855439
doi: 10.1038/nn.3494
Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).
pubmed: 23933748
pmcid: 3774518
doi: 10.1038/nn.3488
Fong, M., Mitchell, D. E., Duffy, K. R. & Bear, M. F. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proc. Natl Acad. Sci. 113, 14139–14144 (2016).
pubmed: 27856748
pmcid: 5150384
doi: 10.1073/pnas.1613279113
Issa, J. B. et al. Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83, 944–959 (2014).
pubmed: 25088366
pmcid: 4242551
doi: 10.1016/j.neuron.2014.07.009
Goltstein, P. M., Coffey, E. B. J., Roelfsema, P. R. & Pennartz, C. M. A. In vivo two-photon Ca2+ imaging reveals selective reward effects on stimulus-specific assemblies in mouse visual cortex. J. Neurosci. 33, 11540–11555 (2013).
pubmed: 23843524
pmcid: 6618686
doi: 10.1523/JNEUROSCI.1341-12.2013
Meijer, G. T., Pie, J. L., Dolman, T. L., Pennartz, C. M. A. & Lansink, C. S. Audiovisual integration enhances stimulus detection performance in mice. Front. Behav. Neurosci. 12, e231 (2018).
Heesy, C. P. On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 281A, 1104–1110 (2004).
doi: 10.1002/ar.a.20116
Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).
pubmed: 26166563
pmcid: 4512881
doi: 10.1016/j.celrep.2015.06.036
Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
pubmed: 26974951
pmcid: 4817237
doi: 10.1038/nn.4268
Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005).
pubmed: 15680687
doi: 10.1016/j.neuroscience.2004.09.066
Vinck, M. et al. Cell-type and State-dependent synchronization among rodent somatosensory, visual, perirhinal cortex, and hippocampus CA1. Front. Syst. Neurosci. 9, e187 (2016).
doi: 10.3389/fnsys.2015.00187
Bos, J. J. et al. Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat. Commun. 8, 15602 (2017).
pubmed: 28548084
pmcid: 5458559
doi: 10.1038/ncomms15602
Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron https://doi.org/10.1016/j.neuron.2018.12.009 (2019).
Oude Lohuis, M. N., Canton, A. C., Pennartz, C. M. A. & Olcese, U. Higher order visual areas enhance stimulus responsiveness in mouse primary visual cortex. Cereb. Cortex https://doi.org/10.1093/cercor/bhab414 (2021).
Montijn, J. S., Goltstein, P. M. & Pennartz, C. M. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns. eLife 4, e10163 (2015).
pubmed: 26646184
pmcid: 4739777
doi: 10.7554/eLife.10163
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430
doi: 10.1038/s41593-018-0209-y
Lauer, S. M., Schneeweiß, U., Brecht, M. & Ray, S. Visualization of cortical modules in flattened mammalian cortices. J. Vis. Exp. e56992 https://doi.org/10.3791/56992 (2018).
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. (Gulf Professional Publishing, 2004).
Gămănuţ, R. et al. The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97, 698–715.e10 (2018).
pubmed: 29420935
pmcid: 5958229
doi: 10.1016/j.neuron.2017.12.037
Burgess, C. P. et al. High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell Rep. 20, 2513–2524 (2017).
pubmed: 28877482
pmcid: 5603732
doi: 10.1016/j.celrep.2017.08.047
McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).
pubmed: 26074005
pmcid: 4631312
doi: 10.1016/j.neuron.2015.05.038
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728
pmcid: 2929880
doi: 10.18637/jss.v033.i01
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bos, J. J. et al. Multiplexing of information about self and others in hippocampal ensembles. Cell Rep. 29, 3859–3871.e6 (2019).
pubmed: 31851919
doi: 10.1016/j.celrep.2019.11.057
Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).
pubmed: 24671065
doi: 10.1038/nn.3648
Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).
pubmed: 24392894
doi: 10.1162/jocn_a_00562