[Integrins in cardiac fibrosis].
Rôle des intégrines dans la fibrose cardiaque.
Journal
Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
entrez:
24
5
2022
pubmed:
25
5
2022
medline:
27
5
2022
Statut:
ppublish
Résumé
For the last 20 years, integrins have been a therapeutic target of interest in the treatment of fibrotic diseases, particularly regarding the integrins of the αV family. Initially developed as anti-cancer drugs but with modest benefits, inhibitors of integrins (such as the anti-αV cilengitide) have shown interesting anti-fibrotic effects in different organs including the heart. Cardiac fibrosis is defined as an accumulation of stiff extracellular matrix in the myocardium, and ultimately leads to heart failure, one of the leading causes of mortality worldwide. Understanding the determinants of cardiac fibrosis and the involvement of integrins is a major matter of public health. This review presents the current knowledge on the different types of cardiac fibrosis and their etiologies, and report on first data supporting specific integrin inhibition therapy as a novel anti-fibrotic strategy, in particular to treat cardiac fibrosis. Rôle des intégrines dans la fibrose cardiaque. Ces vingt dernières années, l’intérêt pour les intégrines n’a cessé de grandir et les découvertes ont ouvert de nouvelles perspectives thérapeutiques, notamment dans le cadre de la fibrose, particulièrement pour les intégrines de la famille aV. Après les revers de la thérapie anti-angiogénique utilisée contre le cancer, de nouvelles molécules inhibitrices de ces intégrines se sont révélées intéressantes pour le traitement de la fibrose tissulaire de différents organes, notamment le cœur. La fibrose cardiaque conduit à terme à l’insuffisance cardiaque, une des premières causes de mortalité dans le monde. La compréhension des déterminants de la fibrose cardiaque et l’implication des intégrines dans son développement représentent un enjeu majeur de santé publique. Dans cette revue, nous présentons les différents types de fibrose cardiaque et leurs étiologies. Nous évoquons ensuite les premières applications de stratégies anti-fibrosantes reposant sur l’inhibition d’intégrines spécifiques, comme traitement futur contre le développement de la fibrose cardiaque.
Autres résumés
Type: Publisher
(fre)
Rôle des intégrines dans la fibrose cardiaque.
Identifiants
pubmed: 35608466
doi: 10.1051/medsci/2022055
pii: msc220001
doi:
Substances chimiques
Integrins
0
Types de publication
Journal Article
Review
Langues
fre
Sous-ensembles de citation
IM
Pagination
438-444Informations de copyright
© 2022 médecine/sciences – Inserm.
Références
Millard M, Odde S, Neamati N, Integrin Targeted Therapeutics. Theranostics 2012 ; 1 : 154–188.
Nguyen TP, Qu Z, Weiss JN, Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. J Mol Cell Cardiol 2014 ; 70 : 83–91.
de Boer RA, de Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 2019 ; 21 : 272–285.
González A, Ravassa S, López B, et al. Myocardial remodeling in hypertension toward a new view of hypertensive heart disease. Hypertension 2018 ; 72 : 549–558.
Cleutjens JPM, Verluyten MJA, Smits JFM, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995 ; 147 : 325–338.
Möllmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 2006 ; 71 : 661–671.
Kramann R, Schneider RK, Dirocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015 ; 16 : 51–66.
Von Gise A, Pu WT., Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012 ; 110 : 1628–1645.
Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: The fibroblast awakens. Circ Res 2016 ; 118 : 1021–1040.
Yaniz-Galende E, Roux M, Nadaud S, et al. Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. J Am Coll Cardiol 2017 ; 70 : 728–741.
Wynn TA, Ramalingam TR, Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med 2012 ; 18 : 1028–1040.
Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 2018 ; 14 : 1645–1657.
Kai H, Kuwahara F, Tokuda K, et al. Diastolic dysfunction in hypertensive hearts: Roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005 ; 28 : 483–490.
Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Hear Fail 2011 ; 4 : 44–52.
Idris-Khodja N, Mian MOR, Paradis P, et al. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J 2014 ; 35 : 1238–1244.
Patel B, Bansal SS, Ismahil MA, et al. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. JACC Basic to Transl Sci 2018 ; 3 : 230–244.
Bansal R, Nakagawa S, Yazdani S, et al. Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Exp Mol Med 2017 ; 49.
Henderson NC, Sheppard D, Integrin-mediated regulation of TGFβ in fibrosis. Biochim Biophys Acta - Mo Basis Dis 2013 ; 1832 : 891–896.
Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 2007 ; 116 : 2127–2138.
Popov Y, Patsenker E, Stickel F, et al. Integrin αvβ6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol 2008 ; 48 : 453–464.
Hahm K, Lukashev ME, Luo Y, et al. Avβ6 Integrin Regulates Renal Fibrosis and Inflammation in Alport Mouse. Am J Pathol 2007 ; 170 : 110–125.
John AE, Graves RH, Pun KT, et al. Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis. Nat Commun 2020; 11 : 1–14.
Horan GS, Wood S, Ona V, et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008 ; 177 : 56–65.
Munger JS, Huang X, Kawakatsu H, et al. The integrin αvβ6 binds and activates latent TGFβ1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999 ; 96 : 319–328.
Reed NI, Jo H, Chen C, et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 2015; 7.
Bouvet M, Claude O, Roux M, et al. Anti-integrin αv therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1+ stromal cells. Sci Rep 2020; 10 : 1–15.
Mu D, Cambier S, Fjellbirkeland L, et al. The integrin ανβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J Cell Biol 2002 ; 157 : 493–507.
Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 2014 ; 207 : 283–297.
Hinz B., The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol 2015 ; 47 : 54–65.
Wipff PJ, Hinz B, Integrins and the activation of latent transforming growth factor β1 - An intimate relationship. Eur J Cell Biol 2008 ; 87 : 601–615.
Hinz B., It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med 2013 ; 19 : 1567–1568.
Ulmasov B, Neuschwander-Tetri BA, Lai J, et al. Inhibitors of Arg-Gly-Asp-Binding Integrins Reduce Development of Pancreatic Fibrosis in Mice. Cmgh 2016 ; 2 : 499–518.
Ulmasov B, Noritake H, Carmichael P, et al. An Inhibitor of Arginine-Glycine-Aspartate-Binding Integrins Reverses Fibrosis in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatol Commun 2019 ; 3 : 246–261.
Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013 ; 19 : 1617–1624.
Murray IR, Gonzalez ZN, Baily J, et al. Av Integrins on Mesenchymal Cells Regulate Skeletal and Cardiac Muscle Fibrosis. Nat Commun 2017; 8.
Bagnato GL, Irrera N, Pizzino G, et al. Dual αvβ3 and avβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin Sci 2018 ; 132 : 231–242.
Perrucci GL, Barbagallo VA, Corlianò M, et al. Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. J Transl Med 2018 ; 16 : 1–13.
Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 2004 ; 64 : 526–535.
Schnittert J, Bansal R, Storm G, et al. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018 ; 129 : 37–53.
Eijgenraam TR, Silljé HHW, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med 2020; 30 : 353–61.