Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose.


Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
09 2022
Historique:
received: 09 04 2021
accepted: 11 05 2022
pubmed: 25 5 2022
medline: 12 8 2022
entrez: 24 5 2022
Statut: ppublish

Résumé

Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ

Identifiants

pubmed: 35609972
doi: 10.1111/pce.14362
doi:

Substances chimiques

Isotopes 0
Water 059QF0KO0R
Sucrose 57-50-1
Hydrogen 7YNJ3PO35Z
Cellulose 9004-34-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2636-2651

Informations de copyright

© 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Références

Alonso, A.P., Vigeolas, H., Raymond, P., Rolin, D. & Dieuaide-Noubhani, M. (2005). A New Substrate Cycle in Plants. Evidence for a High Glucose-Phosphate-to-Glucose Turnover from in Vivo Steady-State and Pulse-Labeling Experiments with [13C]Glucose and [14C]Glucose. Plant Physiology, 138(4), 2220-2232. https://doi.org/10.1104/pp.105.062083
Amthor, J.S., Bar-Even, A., Hanson, A.D., Millar, A.H., Stitt, M., Sweetlove, L.J. et al. (2019) Engineering strategies to boost crop productivity by cutting respiratory carbon loss. The Plant Cell, 31, 297-314.
An, W., Liu, X., Leavitt, S.W., Xu, G., Zeng, X., Wang, W. et al. (2014) Relative humidity history on the Batang-Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD. Climate Dynamics, 42, 2639-2654.
Augusti, A., Betson, T.R. & Schleucher, J. (2006) Hydrogen exchange during cellulose synthesis distinguishes climatic and biochemical isotope fractionations in tree rings. New Phytologist, 172, 490-499.
Augusti, A., Betson, T.R. & Schleucher, J. (2008) Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings. Chemical Geology, 252, 1-8.
Baca Cabrera, J.C., Hirl, R.T., Schäufele, R., Zhu, J., Liu, H., Ogée, J. et al. (2021). 18O enrichment of leaf cellulose correlated with 18O enrichment of leaf sucrose but not bulk leaf water in a C3 grass across contrasts of atmospheric CO2 concentration and air humidity. https://doi.org/10.21203/rs.3.rs-596094/v1
Barbour, M.M. (1999) A physiological study of organic oxygen isotope composition. Canberra: Australian National University.
Barbour, M.M. & Farquhar, G.D. (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment, 23, 473-485.
Barbour, M.M., Fischer, R.A., Sayre, K.D. & Farquhar, G.D. (2000a) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Functional Plant Biology, 27, 625-637.
Barbour, M.M., Schurr, U., Henry, B.K., Wong, S.C. & Farquhar, G.D. (2000b) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect. Plant Physiology, 123, 671-680.
Barnard, R.L., de Bello, F., Gilgen, A.K. & Buchmann, N. (2006) The δ18O of root crown water best reflects source water δ18O in different types of herbaceous species. Rapid Communications in Mass Spectrometry, 20, 3799-3802.
Byrn, M. & Calvin, M. (1966) Oxygen-18 exchange reactions of aldehydes and ketones. Journal of the American Chemical Society, 88, 1916-1922.
Cernusak, L.A., Barbour, M.M., Arndt, S.K., Cheesman, A.W., English, N.B., Feild, T.S. et al. (2016) Stable isotopes in leaf water of terrestrial plants. Plant, Cell & Environment, 39, 1087-1102.
Cernusak, L.A., Farquhar, G.D. & Pate, J.S. (2005) Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiology, 25, 129-146.
Cernusak, L.A., Farquhar, G.D., Wong, S.C. & Stuart-Williams, H. (2004) Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark. Plant Physiology, 136, 3350-3363.
Cernusak, L.A., Pate, J.S. & Farquhar, G.D. (2002) Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant, Cell & Environment, 25, 893-907.
Cernusak, L.A., Wong, S.-C. & Farquhar, G.D. (2003) Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis. Functional Plant Biology, 30, 1059-1070.
Cheesman, A.W. & Cernusak, L.A. (2016) Infidelity in the outback: climate signal recorded in Δ18O of leaf but not branch cellulose of eucalypts across an Australian aridity gradient. Tree Physiology, 37, 554-564.
Chen, Y., Helliker, B.R., Tang, X., Li, F., Zhou, Y. & Song, X. (2020) Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proceedings of the National Academy of Sciences of the United States of America, 117, 33345-33350.
Cormier, M.-A., Werner, R.A., Sauer, P.E., Gröcke, D.R., Leuenberger, M.C., Wieloch, T. et al. (2018) 2H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2H values of plant organic compounds. New Phytologist, 218, 479-491.
Craig, H. & Gordon, L.I. (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi, E. (Ed.) Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa: Lischi and Figli, pp. 9-130.
Cueni, F., Nelson, D.B., Boner, M. & Kahmen, A. (2021) Using plant physiological stable oxygen isotope models to counter food fraud. Scientific Reports, 11, 17314.
Dancer, J., Hatzfeld, W.-D. & Stitt, M. (1990) Cytosolic cycles regulate the turnover of sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L. Planta, 182, 223-231.
DeNiro, M.J. & Cooper, L.W. (1989) Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochimica et Cosmochimica Acta, 53, 2573-2580.
Ehlers, I., Augusti, A., Betson, T.R., Nilsson, M.B., Marshall, J.D. & Schleucher, J. (2015) Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 112, 15585.
Farquhar, G.D., Barbour, M.M. & Henry, B.K. (1998) Interpretation of oxygen isotope composition of leaf material. In: Griffiths, H. (Ed.) Stable isotopes: integration of biological, ecological, and geochemical processes. Oxford: BIOS Scientific Publishers Ltd. pp. 27-48.
Farquhar, G.D. & Lloyd, J. (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer, J.R., Hall, A.E. & Farquhar, G.D. (Eds.) Stable isotopes and plant carbon-water relations. San Diego: Academic Press. pp. 47-70.
Gaudinski, J.B., Dawson, T.E., Quideau, S., Schuur, E.A., Roden, J.S., Trumbore, S.E. et al. (2005) Comparative analysis of cellulose preparation techniques for use with 13C, 14C, AND 18O isotopic measurements. Analytical Chemistry, 77, 7212-7224.
Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H. & Barnard, R. (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant, Cell & Environment, 32, 780-795.
Gessler, A., Peuke, A.D., Keitel, C. & Farquhar, G.D. (2007) Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytologist, 174, 600-613.
Guerrieri, R., Belmecheri, S., Ollinger, S.V., Asbjornsen, H., Jennings, K., Xiao, J. et al. (2019) Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences, 116, 16909-16914.
Hanson, K.R. & McHale, N.A. (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiology, 88, 838-844.
Hatzfeld, W.-D. & Stitt, M. (1990) A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers, and maize endosperm. Planta, 180, 198-204.
Hayes, J.M. (2018) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley, J.W. & Cole, D.R. (Eds.) Stable isotope geochemistry. Washington, DC: De Gruyter, pp. 225-278.
Helliker, B.R. & Richter, S.L. (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature, 454, 511-514.
Hill, S.A., Waterhouse, J.S., Field, E.M., Switsur, V.R. & ap Rees, T. (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell & Environment, 18, 931-936.
Hirl, R.T., Ogée, J., Ostler, U., Schäufele, R., Baca Cabrera, J.C., Zhu, J. et al. (2021) Temperature-sensitive biochemical 18O-fractionation and humidity-dependent attenuation factor are needed to predict δ18O of cellulose from leaf water in a grassland ecosystem. New Phytologist, 229, 3156-3171.
Huber, S.C. (1989) Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiology, 91(2), 656-662. https://doi.org/10.1104/pp.91.2.656
Ivakov, A., Flis, A., Apelt, F., Fünfgeld, M., Scherer, U., Stitt, M. et al. (2017) Cellulose synthesis and cell expansion are regulated by different mechanisms in growing Arabidopsis hypocotyls. The Plant Cell, 29, 1305-1315.
Kahmen, A., Simonin, K., Tu, K.P., Merchant, A., Callister, A., Siegwolf, R. et al. (2008) Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water δ18O enrichment in different Eucalyptus species. Plant, Cell & Environment, 31, 738-751.
Knowles, J.R. & Albery, W.J. (1977) Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Accounts of Chemical Research, 10, 105-111.
Kölling, K., Thalmann, M., Müller, A., Jenny, C. & Zeeman, S.C. (2015) Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock. Plant, Cell & Environment, 38, 1965-1979.
Landhäusser, S.M., Chow, P.S., Dickman, L.T., Furze, M.E., Kuhlman, I., Schmid, S. et al. (2018) Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 38, 1764-1778.
Leadlay, P.F., Albery, W.J. & Knowles, J.R. (1976) Energetics of triosephosphate isomerase: deuterium isotope effects in the enzyme-catalyzed reaction. Biochemistry, 15, 5617-5620.
Lehmann, M.M., Egli, M., Brinkmann, N., Werner, R.A., Saurer, M. & Kahmen, A. (2020) Improving the extraction and purification of leaf and phloem sugars for oxygen isotope analyses. Rapid Communications in Mass Spectrometry, 34, e8854.
Lehmann, M.M., Gamarra, B., Kahmen, A., Siegwolf, R.T.W. & Saurer, M. (2017) Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species. Plant, Cell & Environment, 40, 1658-1670.
Lehmann, M.M., Ghiasi, S., George, G.M., Cormier, M.-A., Gessler, A., Saurer, M. et al. (2019) Influence of starch deficiency on photosynthetic and post-photosynthetic carbon isotope fractionations. Journal of Experimental Botany, 70, 1829-1841.
Lehmann, M.M., Goldsmith, G.R., Mirande-Ney, C., Weigt, R.B., Schönbeck, L., Kahmen, A. et al. (2020) The 18O-signal transfer from water vapour to leaf water and assimilates varies among plant species and growth forms. Plant, Cell & Environment, 43, 510-523.
Lehmann, M.M., Vitali, V., Schuler, P., Leuenberger, M. & Saurer, M. (2021) More than climate: hydrogen isotope ratios in tree rings as novel plant physiological indicator for stress conditions. Dendrochronologia, 65, 125788.
Libby, L.M., Pandolfi, L.J., Payton, P.H., Marshall, J., Becker, B. & Giertz-Sienbenlist, V. (1976) Isotopic tree thermometers. Nature, 261, 284-288.
Luo, Y.-H., Steinberg, L., Suda, S., Kumazawa, S., Mitsui, A. (1991). Extremely low D/H ratios of photoproduced hydrogen by Cyanobacteria. Plant & Cell Physiology. https://doi.org/10.1093/oxfordjournals.pcp.a078158
Luo, Y.-H. & Sternberg, L. (1992) Hydrogen and oxygen isotopic fractionation during heterotrophic cellulose synthesis. Journal of Experimental Botany, 43, 47-50.
Ma, R., Zhao, Y., Liu, L., Zhu, Z., Wang, B., Wang, Y. et al. (2020) Novel Position-specific 18O/16O measurement of carbohydrates. II. The complete intramolecular 18O/16O profile of the glucose unit in a starch of C4 origin. Analytical Chemistry, 92, 7462-7470.
Nabeshima, E., Nakatsuka, T., Kagawa, A., Hiura, T. & Funada, R. (2018) Seasonal changes of δD and δ18O in tree-ring cellulose of Quercus crispula suggest a change in post-photosynthetic processes during earlywood growth. Tree Physiology, 38, 1829-1840.
Newberry, S.L., Nelson, D.B. & Kahmen, A. (2017) Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis. Ecohydrology, 10, e1892.
O'Donoghue, A.C., Amyes, T.L. & Richard, J.P. (2005a) Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O. Biochemistry, 44, 2610-2621.
O'Donoghue, A.C., Amyes, T.L. & Richard, J.P. (2005b) Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of dihydroxyacetone phosphate in D2O. Biochemistry, 44, 2622-2631.
R Core Team. (2019) R: a language and environment for statistical computing.
Rieder, S.V. & Rose, I.A. (1959) The mechanism of the triosephosphate isomerase reaction. Journal of Biological Chemistry, 234, 1007-1010.
Roden, J.S., Lin, G. & Ehleringer, J.R. (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta, 64, 21-35.
Rose, I.A. & O'Connell, E.L. (1961) Intramolecular hydrogen transfer in the phosphoglucose isomerase reaction. Journal of Biological Chemistry, 236, 3086-3092.
Sanchez-Bragado, R., Serret, M.D., Marimon, R.M., Bort, J. & Araus, J.L. (2019) The hydrogen isotope composition δ(2)H reflects plant performance. Plant Physiology, 180, 793-812.
Sargeant, C.I., Singer, M.B. & Vallet-Coulomb, C. (2019) Identification of source-water oxygen isotopes in trees toolkit (ISO-tool) for deciphering historical water use by forest trees. Water Resources Research, 55, 10954-10975.
Scheidegger, Y., Saurer, M., Bahn, M. & Siegwolf, R. (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia, 125, 350-357.
Schleucher, J., Vanderveer, P., Markley, J.L. & Sharkey, T.D. (1999) Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant, Cell & Environment, 22, 525-533.
Schmidt, H.-L., Werner, R.A. & Eisenreich, W. (2003) Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochemistry Reviews, 2, 61-85.
Schmidt, H.L., Werner, R.A. & Rossmann, A. (2001) 18O pattern and biosynthesis of natural plant products. Phytochemistry, 58, 9-32.
Schuler, P., Cormier, M.A., Werner, R.A., Buchmann, N., Gessler, A., Vitali, V., Saurer, M., Lehmann, M.M. (2021) A high-temperature water vapor equilibration method to determine non-exchangeable hydrogen isotope ratios of sugar, starch and cellulose. Plant, Cell & Environment, 45, 12-22.
Song, X., Farquhar, G.D., Gessler, A. & Barbour, M.M. (2014) Turnover time of the non-structural carbohydrate pool influences δ18O of leaf cellulose. Plant, Cell & Environment, 37, 2500-2507.
Sternberg, L. & DeNiro, M.J.D. (1983) Biogeochemical implications of the isotopic equilibrium fractionation factor between the oxygen atoms of acetone and water. Geochimica et Cosmochimica Acta, 47, 2271-2274.
Sternberg, L. & Ellsworth, P.F.V. (2011) Divergent biochemical fractionation, not convergent temperature, explains cellulose oxygen isotope enrichment across latitudes. PLoS One, 6, e28040.
Stitt, M. & Zeeman, S.C. (2012) Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology, 15, 282-292.
Sulpice, R., Flis, A., Ivakov, A.A., Apelt, F., Krohn, N., Encke, B. et al. (2014) Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Molecular Plant, 7, 137-155.
Sulpice, R., Pyl, E.-T., Ishihara, H., Trenkamp, S., Steinfath, M., Witucka-Wall, H. et al. (2009) Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences of the United States of America, 106, 10348-10353.
Szejner, P., Clute, T., Anderson, E., Evans, M.N. & Hu, J. (2020) Reduction in lumen area is associated with the δ18O exchange between sugars and source water during cellulose synthesis. New Phytologist, 226, 1583-1593.
Tcherkez, G. (2010) Isotopie biologique-introduction aux effets isotopiques et à leurs applications en biologie. Éditions Tec et Doc.
Voelker, S.L., Brooks, J.R., Meinzer, F.C., Roden, J., Pazdur, A., Pawelczyk, S. et al. (2014) Reconstructing relative humidity from plant δ18O and δD as deuterium deviations from the global meteoric water line. Ecological Applications, 24, 960-975.
Warton, D.I., Duursma, R.A., Falster, D.S. & Taskinen, S. (2012) smatr 3-an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259.
Waterhouse, J.S., Switsur, V.R., Barker, A.C., Carter, A.H.C. & Robertson, I. (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth and Planetary Science Letters, 201, 421-430.
Weise, S.E., Weber, A.P.M., & Sharkey, T.D. (2004). Maltose is the major form of carbon exported from the chloroplast at night. Planta, 218(3), 474-482. https://doi.org/10.1007/s00425-003-1128-y
Wieloch, T., Augusti, A. & Schleucher, J. (2022a) Anaplerotic flux into the Calvin-Benson cycle: hydrogen isotope evidence for in vivo occurrence in C3 metabolism. New Phytologist, 234, 405-461.
Wieloch, T., Grabner, M., Augusti, A., Serk, H., Ehlers, I., Yu, J. et al. (2022b) Metabolism is a major driver of hydrogen isotope fractionation recorded in tree-ring glucose of Pinus nigra. New Phytologist, 234, 449-461.
Wijker, R.S., Sessions, A.L., Fuhrer, T. & Phan, M. (2019) 2H/1H variation in microbial lipids is controlled by NADPH metabolism. Proceedings of the National Academy of Sciences of the United States of America, 116, 12173-12182.
Yakir, D. & DeNiro, M.J. (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiology, 93, 325-332.
Zhou, Y., Zhang, B., Stuart-Williams, H., Grice, K., Hocart, C.H., Gessler, A. et al. (2018) On the contributions of photorespiration and compartmentation to the contrasting intramolecular 2H profiles of C3 and C4 plant sugars. Phytochemistry, 145, 197-206.
Zhu, Z., Yin, X., Song, X., Wang, B., Ma, R., Zhao, Y. et al. (2020) Leaf transition from heterotrophy to autotrophy is recorded in the intraleaf C, H and O isotope patterns of leaf organic matter. Rapid Communications in Mass Spectrometry, 34, e8840.

Auteurs

Meisha Holloway-Phillips (M)

Department of Environmental Science-Botany, University of Basel, Basel, Switzerland.

Jochem Baan (J)

Department of Environmental Science-Botany, University of Basel, Basel, Switzerland.

Daniel B Nelson (DB)

Department of Environmental Science-Botany, University of Basel, Basel, Switzerland.

Marco M Lehmann (MM)

Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland.

Guillaume Tcherkez (G)

Research School of Biology, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France.

Ansgar Kahmen (A)

Department of Environmental Science-Botany, University of Basel, Basel, Switzerland.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH