Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
25 05 2022
25 05 2022
Historique:
received:
09
12
2021
accepted:
04
05
2022
entrez:
25
5
2022
pubmed:
26
5
2022
medline:
28
5
2022
Statut:
epublish
Résumé
In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect chemicals present in the environment, and to adapt to various levels of stimulation. The contribution of endogenous and external factors to these neuronal identities remains to be determined. Taking advantage of the parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience. We found that at rest, the transcriptomic profiles of mouse olfactory sensory neuron populations are already divergent, specific to the olfactory receptor they express, and are associated with the sequence of these latter. These divergent profiles further evolve in response to the environment, as odorant exposure leads to reprogramming via the modulation of transcription. These findings highlight a broad range of sensory neuron identities that are present at rest and that adapt to the experience of the individual, thus adding to the complexity and flexibility of sensory coding.
Identifiants
pubmed: 35614043
doi: 10.1038/s41467-022-30511-4
pii: 10.1038/s41467-022-30511-4
pmc: PMC9132991
doi:
Substances chimiques
Receptors, Odorant
0
Banques de données
figshare
['10.6084/m9.figshare.c.5957625']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2929Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Jiang, Y. & Matsunami, H. Mammalian odorant receptors: functional evolution and variation. Curr. Opin. Neurobiol. 34, 54–60 (2015).
pubmed: 25660959
pmcid: 4526454
doi: 10.1016/j.conb.2015.01.014
Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J. Hum. Genet. 51, 505–517 (2006).
pubmed: 16607462
pmcid: 1850483
doi: 10.1007/s10038-006-0391-8
Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).
pubmed: 27780046
pmcid: 5104188
doi: 10.1016/j.cub.2016.09.011
Dalton, R. P. & Lomvardas, S. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38, 331–349 (2015).
pubmed: 25938729
pmcid: 4882759
doi: 10.1146/annurev-neuro-071714-034145
Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).
pubmed: 8087849
doi: 10.1016/S0092-8674(94)90562-2
Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14, 31–36 (2004).
pubmed: 15018935
doi: 10.1016/j.conb.2004.01.014
Saraiva, L. R. et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci. Rep. 5, 18178 (2015).
pubmed: 26670777
pmcid: 4680959
doi: 10.1038/srep18178
Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).
pubmed: 10089886
doi: 10.1016/S0092-8674(00)80581-4
Buck, L. B. Olfactory receptors and odor coding in mammals. Nutr. Rev. 62, S184–S188 (2004). discussion S224-141.
pubmed: 15630933
doi: 10.1111/j.1753-4887.2004.tb00097.x
West, A. E. & Greenberg, M. E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 3, https://doi.org/10.1101/cshperspect.a005744 (2011).
Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev. Neurosci. 29, 307–323 (2006).
pubmed: 16776588
doi: 10.1146/annurev.neuro.28.061604.135751
Benito, E. & Barco, A. The neuronal activity-driven transcriptome. Mol. Neurobiol. 51, 1071–1088 (2015).
pubmed: 24935719
doi: 10.1007/s12035-014-8772-z
Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348 (2018).
pubmed: 30359600
pmcid: 6223657
doi: 10.1016/j.neuron.2018.10.013
Coppola, D. M. & Waggener, C. T. The effects of unilateral naris occlusion on gene expression profiles in mouse olfactory mucosa. J. Mol. Neurosci. 47, 604–618 (2012).
pubmed: 22187364
doi: 10.1007/s12031-011-9690-4
Zhao, S. et al. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS ONE 8, e69862 (2013).
pubmed: 23922828
pmcid: 3726745
doi: 10.1371/journal.pone.0069862
Barber, C. N. & Coppola, D. M. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility. J. Neurophysiol. 114, 2023–2032 (2015).
pubmed: 26269548
pmcid: 4583562
doi: 10.1152/jn.00076.2015
Cadiou, H. et al. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level. J. Neurosci. 34, 4857–4870 (2014).
pubmed: 24695705
pmcid: 6802718
doi: 10.1523/JNEUROSCI.0688-13.2014
Fischl, A. M., Heron, P. M., Stromberg, A. J. & McClintock, T. S. Activity-dependent genes in mouse olfactory sensory neurons. Chem. Senses 39, 439–449 (2014).
pubmed: 24692514
pmcid: 4025512
doi: 10.1093/chemse/bju015
Wang, Q., Titlow, W. B., McClintock, D. A., Stromberg, A. J. & McClintock, T. S. Activity-dependent gene expression in the mammalian olfactory epithelium. Chem. Senses 42, 611–624 (2017).
pubmed: 28525560
pmcid: 5863567
doi: 10.1093/chemse/bjx028
Ibarra-Soria, X. et al. Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. Elife 6, https://doi.org/10.7554/eLife.21476 (2017).
Serizawa, S. et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127, 1057–1069 (2006).
pubmed: 17129788
doi: 10.1016/j.cell.2006.10.031
Williams, E. O. et al. Delta protocadherin 10 is regulated by activity in the mouse main olfactory system. Front. Neural Circuit 5, https://doi.org/10.3389/fncir.2011.00009 (2011).
Oztokatli, H., Hornberg, M., Berghard, A. & Bohm, S. Retinoic acid receptor and CNGA2 channel signaling are part of a regulatory feedback loop controlling axonal convergence and survival of olfactory sensory neurons. Faseb J. 26, 617–627 (2012).
pubmed: 22009938
pmcid: 3290444
doi: 10.1096/fj.11-192450
Santoro, S. W. & Dulac, C. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. Elife 1, e00070 (2012).
pubmed: 23240083
pmcid: 3510456
doi: 10.7554/eLife.00070
von der Weid, B. et al. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci. 18, 1455–1463 (2015).
pubmed: 26322926
doi: 10.1038/nn.4100
Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817–830.e818 (2017).
pubmed: 28506465
pmcid: 5484588
doi: 10.1016/j.stem.2017.04.003
Buck, L. B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 (1996).
pubmed: 8833453
doi: 10.1146/annurev.ne.19.030196.002505
Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350, 1251–1255 (2015).
pubmed: 26541607
pmcid: 5642900
doi: 10.1126/science.aad2456
Nishizumi, H., Kumasaka, K., Inoue, N., Nakashima, A. & Sakano, H. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc. Natl Acad. Sci. USA. 104, 20067–20072 (2007).
pubmed: 18077433
pmcid: 2148423
doi: 10.1073/pnas.0706544105
Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130, 373–384 (2007).
pubmed: 17662950
doi: 10.1016/j.cell.2007.06.023
Bozza, T. et al. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61, 220–233 (2009).
pubmed: 19186165
pmcid: 3013286
doi: 10.1016/j.neuron.2008.11.010
Khan, M., Vaes, E. & Mombaerts, P. Regulation of the probability of mouse odorant receptor gene choice. Cell 147, 907–921 (2011).
pubmed: 22078886
doi: 10.1016/j.cell.2011.09.049
Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl Acad. Sci. U.S.A. 96, 4040–4045 (1999).
pubmed: 10097159
pmcid: 22416
doi: 10.1073/pnas.96.7.4040
Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).
pubmed: 11943806
pmcid: 6757547
doi: 10.1523/JNEUROSCI.22-08-03033.2002
Tsukahara, T. et al. A transcriptional rheostat couples past activity to future sensory responses. Cell 184, 6326 (2021).
pubmed: 34879231
pmcid: 8758202
doi: 10.1016/j.cell.2021.11.022
Liu, C. & Hadjiargyrou, M. Identification and characterization of the Mustang promoter: Regulation by AP-1 during myogenic differentiation. Bone 39, 815–824 (2006).
pubmed: 16731063
doi: 10.1016/j.bone.2006.04.002
Abraham, N. M., Vincis, R., Lagier, S., Rodriguez, I. & Carleton, A. Long term functional plasticity of sensory inputs mediated by olfactory learning. Elife 3, e02109 (2014).
pubmed: 24642413
pmcid: 3953949
doi: 10.7554/eLife.02109
Reisert, J. Origin of basal activity in mammalian olfactory receptor neurons. J. Gen. Physiol. 136, 529–540 (2010).
pubmed: 20974772
pmcid: 2964517
doi: 10.1085/jgp.201010528
Lowe, G. & Gold, G. H. Olfactory transduction is intrinsically noisy. Chem. Senses 20, 174–174 (1995).
Shirley, S. G., Robinson, C. J., Dickinson, K., Aujla, R. & Dodd, G. H. Olfactory adenylate-cyclase of the rat—stimulation by odorants and inhibition by Ca-2. Biochemical J. 240, 605–607 (1986).
doi: 10.1042/bj2400605
Jackson, M. B. Spontaneous openings of the acetylcholine-receptor channel. Proc. Natl Acad. Sci. Biol. 81, 3901–3904 (1984).
doi: 10.1073/pnas.81.12.3901
Gether, U. et al. Structural instability of a constitutively active G protein-coupled receptor—agonist-independent activation due to conformational flexibility. J. Biol. Chem. 272, 2587–2590 (1997).
pubmed: 9006889
doi: 10.1074/jbc.272.5.2587
Bond, R. A. et al. Physiological-effects of inverse agonists in transgenic mice with myocardial overexpression of the beta(2)-adrenoceptor. Nature 374, 272–276 (1995).
pubmed: 7885448
doi: 10.1038/374272a0
Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).
pubmed: 17629961
doi: 10.1016/j.tips.2007.06.003
Costa, T. & Herz, A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. USA. 86, 7321–7325 (1989).
pubmed: 2552439
pmcid: 298053
doi: 10.1073/pnas.86.19.7321
Damian, M. et al. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J. Biol. Chem. 287, 3630–3641 (2012).
pubmed: 22117076
doi: 10.1074/jbc.M111.288324
Nakashima, A. et al. Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons. Cell 154, 1314–1325 (2013).
pubmed: 24034253
pmcid: 7394037
doi: 10.1016/j.cell.2013.08.033
Watt, W. C. et al. Odorant stimulation enhances survival of olfactory sensory neurons via MAPK and CREB. Neuron 41, 955–967 (2004).
pubmed: 15046727
doi: 10.1016/S0896-6273(04)00075-3
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).
pubmed: 30096299
pmcid: 6447408
doi: 10.1016/j.cell.2018.07.028
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).
pubmed: 30096314
pmcid: 6086934
doi: 10.1016/j.cell.2018.06.021
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).
pubmed: 26727548
pmcid: 4985242
doi: 10.1038/nn.4216
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).
pubmed: 30382198
pmcid: 6456269
doi: 10.1038/s41586-018-0654-5
Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).
pubmed: 11739580
pmcid: 2570017
doi: 10.1523/JNEUROSCI.21-24-09713.2001
Vassalli, A., Rothman, A., Feinstein, P., Zapotocky, M. & Mombaerts, P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35, 681–696 (2002).
pubmed: 12194868
doi: 10.1016/S0896-6273(02)00793-6
Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004).
pubmed: 15186781
doi: 10.1016/j.cell.2004.05.011
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601
pmcid: 5241818
doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923
pmcid: 4430369
doi: 10.1038/nbt.3192
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv, https://doi.org/10.1371/journal.pgen.1008432 (2018).
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. (2018).
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. In 31st International Conference on Distributed Computing Systems Workshops (2011).
Schäfer, T. & Ecker, C. fsbrain: an R package for the visualization of structural neuroimaging data. bioRxiv, https://doi.org/10.1101/2020.09.18.302935 (2020).
Cohen, J. Statistical power analysis for the behavioral-sciences—Cohen, J. Percept. Mot. Skill 67, 1007–1007 (1988).
Niimura, Y. Identification of olfactory receptor genes from mammalian genome sequences. Methods Mol. Biol. 1003, 39–49 (2013).
pubmed: 23585032
doi: 10.1007/978-1-62703-377-0_3
de March, C. A., Kim, S. K., Antonczak, S., Goddard, W. A. 3rd & Golebiowski, J. G protein-coupled odorant receptors: from sequence to structure. Protein Sci. 24, 1543–1548 (2015).
pubmed: 26044705
pmcid: 4570547
doi: 10.1002/pro.2717
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835
pmcid: 3261699
doi: 10.1038/msb.2011.75
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638
doi: 10.1093/sysbio/syq010
Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).
pubmed: 439147
doi: 10.1007/BF01732340
Kaur, A., Dey, S. & Stowers, L. Live cell calcium imaging of dissociated vomeronasal neurons. Methods Mol. Biol. 1068, 189–200 (2013).
pubmed: 24014362
doi: 10.1007/978-1-62703-619-1_13
Bressel, O. C., Khan, M. & Mombaerts, P. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb. J. Comp. Neurol. 524, 199–209 (2016).
pubmed: 26100963
doi: 10.1002/cne.23835
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B series B, 289–300 (1995).
Stirling, D. R., Carpenter, A. E. & Cimini, B. A. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis. Bioinformatics 37, 3992–3994 (2021).
doi: 10.1093/bioinformatics/btab634
Erben, L. & Buonanno, A. Detection and quantification of multiple RNA sequences using emerging ultrasensitive fluorescent in situ hybridization techniques. Curr. Protoc. Neurosci. 87, e63 (2019).
pubmed: 30791216
pmcid: 7476812
doi: 10.1002/cpns.63