Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
25 05 2022
Historique:
received: 09 12 2021
accepted: 04 05 2022
entrez: 25 5 2022
pubmed: 26 5 2022
medline: 28 5 2022
Statut: epublish

Résumé

In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect chemicals present in the environment, and to adapt to various levels of stimulation. The contribution of endogenous and external factors to these neuronal identities remains to be determined. Taking advantage of the parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience. We found that at rest, the transcriptomic profiles of mouse olfactory sensory neuron populations are already divergent, specific to the olfactory receptor they express, and are associated with the sequence of these latter. These divergent profiles further evolve in response to the environment, as odorant exposure leads to reprogramming via the modulation of transcription. These findings highlight a broad range of sensory neuron identities that are present at rest and that adapt to the experience of the individual, thus adding to the complexity and flexibility of sensory coding.

Identifiants

pubmed: 35614043
doi: 10.1038/s41467-022-30511-4
pii: 10.1038/s41467-022-30511-4
pmc: PMC9132991
doi:

Substances chimiques

Receptors, Odorant 0

Banques de données

figshare
['10.6084/m9.figshare.c.5957625']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2929

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Jiang, Y. & Matsunami, H. Mammalian odorant receptors: functional evolution and variation. Curr. Opin. Neurobiol. 34, 54–60 (2015).
pubmed: 25660959 pmcid: 4526454 doi: 10.1016/j.conb.2015.01.014
Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J. Hum. Genet. 51, 505–517 (2006).
pubmed: 16607462 pmcid: 1850483 doi: 10.1007/s10038-006-0391-8
Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).
pubmed: 27780046 pmcid: 5104188 doi: 10.1016/j.cub.2016.09.011
Dalton, R. P. & Lomvardas, S. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38, 331–349 (2015).
pubmed: 25938729 pmcid: 4882759 doi: 10.1146/annurev-neuro-071714-034145
Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).
pubmed: 8087849 doi: 10.1016/S0092-8674(94)90562-2
Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14, 31–36 (2004).
pubmed: 15018935 doi: 10.1016/j.conb.2004.01.014
Saraiva, L. R. et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci. Rep. 5, 18178 (2015).
pubmed: 26670777 pmcid: 4680959 doi: 10.1038/srep18178
Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).
pubmed: 10089886 doi: 10.1016/S0092-8674(00)80581-4
Buck, L. B. Olfactory receptors and odor coding in mammals. Nutr. Rev. 62, S184–S188 (2004). discussion S224-141.
pubmed: 15630933 doi: 10.1111/j.1753-4887.2004.tb00097.x
West, A. E. & Greenberg, M. E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 3, https://doi.org/10.1101/cshperspect.a005744 (2011).
Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev. Neurosci. 29, 307–323 (2006).
pubmed: 16776588 doi: 10.1146/annurev.neuro.28.061604.135751
Benito, E. & Barco, A. The neuronal activity-driven transcriptome. Mol. Neurobiol. 51, 1071–1088 (2015).
pubmed: 24935719 doi: 10.1007/s12035-014-8772-z
Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348 (2018).
pubmed: 30359600 pmcid: 6223657 doi: 10.1016/j.neuron.2018.10.013
Coppola, D. M. & Waggener, C. T. The effects of unilateral naris occlusion on gene expression profiles in mouse olfactory mucosa. J. Mol. Neurosci. 47, 604–618 (2012).
pubmed: 22187364 doi: 10.1007/s12031-011-9690-4
Zhao, S. et al. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS ONE 8, e69862 (2013).
pubmed: 23922828 pmcid: 3726745 doi: 10.1371/journal.pone.0069862
Barber, C. N. & Coppola, D. M. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility. J. Neurophysiol. 114, 2023–2032 (2015).
pubmed: 26269548 pmcid: 4583562 doi: 10.1152/jn.00076.2015
Cadiou, H. et al. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level. J. Neurosci. 34, 4857–4870 (2014).
pubmed: 24695705 pmcid: 6802718 doi: 10.1523/JNEUROSCI.0688-13.2014
Fischl, A. M., Heron, P. M., Stromberg, A. J. & McClintock, T. S. Activity-dependent genes in mouse olfactory sensory neurons. Chem. Senses 39, 439–449 (2014).
pubmed: 24692514 pmcid: 4025512 doi: 10.1093/chemse/bju015
Wang, Q., Titlow, W. B., McClintock, D. A., Stromberg, A. J. & McClintock, T. S. Activity-dependent gene expression in the mammalian olfactory epithelium. Chem. Senses 42, 611–624 (2017).
pubmed: 28525560 pmcid: 5863567 doi: 10.1093/chemse/bjx028
Ibarra-Soria, X. et al. Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. Elife 6, https://doi.org/10.7554/eLife.21476 (2017).
Serizawa, S. et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127, 1057–1069 (2006).
pubmed: 17129788 doi: 10.1016/j.cell.2006.10.031
Williams, E. O. et al. Delta protocadherin 10 is regulated by activity in the mouse main olfactory system. Front. Neural Circuit 5, https://doi.org/10.3389/fncir.2011.00009 (2011).
Oztokatli, H., Hornberg, M., Berghard, A. & Bohm, S. Retinoic acid receptor and CNGA2 channel signaling are part of a regulatory feedback loop controlling axonal convergence and survival of olfactory sensory neurons. Faseb J. 26, 617–627 (2012).
pubmed: 22009938 pmcid: 3290444 doi: 10.1096/fj.11-192450
Santoro, S. W. & Dulac, C. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. Elife 1, e00070 (2012).
pubmed: 23240083 pmcid: 3510456 doi: 10.7554/eLife.00070
von der Weid, B. et al. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci. 18, 1455–1463 (2015).
pubmed: 26322926 doi: 10.1038/nn.4100
Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817–830.e818 (2017).
pubmed: 28506465 pmcid: 5484588 doi: 10.1016/j.stem.2017.04.003
Buck, L. B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 (1996).
pubmed: 8833453 doi: 10.1146/annurev.ne.19.030196.002505
Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350, 1251–1255 (2015).
pubmed: 26541607 pmcid: 5642900 doi: 10.1126/science.aad2456
Nishizumi, H., Kumasaka, K., Inoue, N., Nakashima, A. & Sakano, H. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc. Natl Acad. Sci. USA. 104, 20067–20072 (2007).
pubmed: 18077433 pmcid: 2148423 doi: 10.1073/pnas.0706544105
Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130, 373–384 (2007).
pubmed: 17662950 doi: 10.1016/j.cell.2007.06.023
Bozza, T. et al. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61, 220–233 (2009).
pubmed: 19186165 pmcid: 3013286 doi: 10.1016/j.neuron.2008.11.010
Khan, M., Vaes, E. & Mombaerts, P. Regulation of the probability of mouse odorant receptor gene choice. Cell 147, 907–921 (2011).
pubmed: 22078886 doi: 10.1016/j.cell.2011.09.049
Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl Acad. Sci. U.S.A. 96, 4040–4045 (1999).
pubmed: 10097159 pmcid: 22416 doi: 10.1073/pnas.96.7.4040
Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).
pubmed: 11943806 pmcid: 6757547 doi: 10.1523/JNEUROSCI.22-08-03033.2002
Tsukahara, T. et al. A transcriptional rheostat couples past activity to future sensory responses. Cell 184, 6326 (2021).
pubmed: 34879231 pmcid: 8758202 doi: 10.1016/j.cell.2021.11.022
Liu, C. & Hadjiargyrou, M. Identification and characterization of the Mustang promoter: Regulation by AP-1 during myogenic differentiation. Bone 39, 815–824 (2006).
pubmed: 16731063 doi: 10.1016/j.bone.2006.04.002
Abraham, N. M., Vincis, R., Lagier, S., Rodriguez, I. & Carleton, A. Long term functional plasticity of sensory inputs mediated by olfactory learning. Elife 3, e02109 (2014).
pubmed: 24642413 pmcid: 3953949 doi: 10.7554/eLife.02109
Reisert, J. Origin of basal activity in mammalian olfactory receptor neurons. J. Gen. Physiol. 136, 529–540 (2010).
pubmed: 20974772 pmcid: 2964517 doi: 10.1085/jgp.201010528
Lowe, G. & Gold, G. H. Olfactory transduction is intrinsically noisy. Chem. Senses 20, 174–174 (1995).
Shirley, S. G., Robinson, C. J., Dickinson, K., Aujla, R. & Dodd, G. H. Olfactory adenylate-cyclase of the rat—stimulation by odorants and inhibition by Ca-2. Biochemical J. 240, 605–607 (1986).
doi: 10.1042/bj2400605
Jackson, M. B. Spontaneous openings of the acetylcholine-receptor channel. Proc. Natl Acad. Sci. Biol. 81, 3901–3904 (1984).
doi: 10.1073/pnas.81.12.3901
Gether, U. et al. Structural instability of a constitutively active G protein-coupled receptor—agonist-independent activation due to conformational flexibility. J. Biol. Chem. 272, 2587–2590 (1997).
pubmed: 9006889 doi: 10.1074/jbc.272.5.2587
Bond, R. A. et al. Physiological-effects of inverse agonists in transgenic mice with myocardial overexpression of the beta(2)-adrenoceptor. Nature 374, 272–276 (1995).
pubmed: 7885448 doi: 10.1038/374272a0
Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).
pubmed: 17629961 doi: 10.1016/j.tips.2007.06.003
Costa, T. & Herz, A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. USA. 86, 7321–7325 (1989).
pubmed: 2552439 pmcid: 298053 doi: 10.1073/pnas.86.19.7321
Damian, M. et al. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J. Biol. Chem. 287, 3630–3641 (2012).
pubmed: 22117076 doi: 10.1074/jbc.M111.288324
Nakashima, A. et al. Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons. Cell 154, 1314–1325 (2013).
pubmed: 24034253 pmcid: 7394037 doi: 10.1016/j.cell.2013.08.033
Watt, W. C. et al. Odorant stimulation enhances survival of olfactory sensory neurons via MAPK and CREB. Neuron 41, 955–967 (2004).
pubmed: 15046727 doi: 10.1016/S0896-6273(04)00075-3
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).
pubmed: 30096299 pmcid: 6447408 doi: 10.1016/j.cell.2018.07.028
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).
pubmed: 26727548 pmcid: 4985242 doi: 10.1038/nn.4216
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).
pubmed: 30382198 pmcid: 6456269 doi: 10.1038/s41586-018-0654-5
Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).
pubmed: 11739580 pmcid: 2570017 doi: 10.1523/JNEUROSCI.21-24-09713.2001
Vassalli, A., Rothman, A., Feinstein, P., Zapotocky, M. & Mombaerts, P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35, 681–696 (2002).
pubmed: 12194868 doi: 10.1016/S0896-6273(02)00793-6
Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004).
pubmed: 15186781 doi: 10.1016/j.cell.2004.05.011
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923 pmcid: 4430369 doi: 10.1038/nbt.3192
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv, https://doi.org/10.1371/journal.pgen.1008432 (2018).
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. (2018).
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. In 31st International Conference on Distributed Computing Systems Workshops (2011).
Schäfer, T. & Ecker, C. fsbrain: an R package for the visualization of structural neuroimaging data. bioRxiv, https://doi.org/10.1101/2020.09.18.302935 (2020).
Cohen, J. Statistical power analysis for the behavioral-sciences—Cohen, J. Percept. Mot. Skill 67, 1007–1007 (1988).
Niimura, Y. Identification of olfactory receptor genes from mammalian genome sequences. Methods Mol. Biol. 1003, 39–49 (2013).
pubmed: 23585032 doi: 10.1007/978-1-62703-377-0_3
de March, C. A., Kim, S. K., Antonczak, S., Goddard, W. A. 3rd & Golebiowski, J. G protein-coupled odorant receptors: from sequence to structure. Protein Sci. 24, 1543–1548 (2015).
pubmed: 26044705 pmcid: 4570547 doi: 10.1002/pro.2717
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835 pmcid: 3261699 doi: 10.1038/msb.2011.75
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638 doi: 10.1093/sysbio/syq010
Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).
pubmed: 439147 doi: 10.1007/BF01732340
Kaur, A., Dey, S. & Stowers, L. Live cell calcium imaging of dissociated vomeronasal neurons. Methods Mol. Biol. 1068, 189–200 (2013).
pubmed: 24014362 doi: 10.1007/978-1-62703-619-1_13
Bressel, O. C., Khan, M. & Mombaerts, P. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb. J. Comp. Neurol. 524, 199–209 (2016).
pubmed: 26100963 doi: 10.1002/cne.23835
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B series B, 289–300 (1995).
Stirling, D. R., Carpenter, A. E. & Cimini, B. A. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis. Bioinformatics 37, 3992–3994 (2021).
doi: 10.1093/bioinformatics/btab634
Erben, L. & Buonanno, A. Detection and quantification of multiple RNA sequences using emerging ultrasensitive fluorescent in situ hybridization techniques. Curr. Protoc. Neurosci. 87, e63 (2019).
pubmed: 30791216 pmcid: 7476812 doi: 10.1002/cpns.63

Auteurs

Luis Flores Horgue (LF)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Alexis Assens (A)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Leon Fodoulian (L)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Leonardo Marconi (L)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Joël Tuberosa (J)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Alexander Haider (A)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Madlaina Boillat (M)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland.

Alan Carleton (A)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland. Alan.Carleton@unige.ch.

Ivan Rodriguez (I)

Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland. Ivan.Rodriguez@unige.ch.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH