The diverse role of the raphe 5-HTergic systems in epilepsy.

5-HT SSRI epilepsy epilepsy-associated comorbidities raphe nuclei sudden unexpected death in epilepsy (SUDEP)

Journal

Acta pharmacologica Sinica
ISSN: 1745-7254
Titre abrégé: Acta Pharmacol Sin
Pays: United States
ID NLM: 100956087

Informations de publication

Date de publication:
Nov 2022
Historique:
received: 15 02 2022
accepted: 05 05 2022
pubmed: 26 5 2022
medline: 3 11 2022
entrez: 25 5 2022
Statut: ppublish

Résumé

The raphe nuclei comprise nearly all of 5-hydroxytryptaminergic (5-HTergic) neurons in the brain and are widely acknowledged to participate in the modulation of neural excitability. "Excitability-inhibition imbalance" results in a variety of brain disorders, including epilepsy. Epilepsy is a common neurological disorder characterized by hypersynchronous epileptic seizures accompanied by many psychological, social, cognitive consequences. Current antiepileptic drugs and other therapeutics are not ideal to control epilepsy and its comorbidities. Cumulative evidence suggests that the raphe nuclei and 5-HTergic system play an important role in epilepsy and epilepsy-associated comorbidities. Seizure activities propagate to the raphe nuclei and induce various alterations in different subregions of the raphe nuclei at the cellular and molecular levels. Intervention of the activity of raphe nuclei and raphe 5-HTergic system with pharmacological or genetic approaches, deep brain stimulation or optogenetics produces indeed diverse and even contradictory effects on seizure and epilepsy-associated comorbidities in different epilepsy models. Nevertheless, there are still many open questions left, especially regarding to the relationship between 5-HTergic neural circuit and epilepsy. Understanding of 5-HTergic network in a circuit- and molecule-specific way may not only be therapeutically relevant for increasing the drug specificity and precise treatment in epilepsy, but also provide critical hints for other brain disorders with abnormal neural excitability. In this review we focus on the roles of the raphe 5-HTergic system in epilepsy and epilepsy-associated comorbidities. Besides, further perspectives about the complexity and diversity of the raphe nuclei in epilepsy are also addressed.

Identifiants

pubmed: 35614227
doi: 10.1038/s41401-022-00918-2
pii: 10.1038/s41401-022-00918-2
pmc: PMC9622810
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2777-2788

Informations de copyright

© 2022. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.

Références

Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol Ther. 2019;201:77–93.
pubmed: 31128154 doi: 10.1016/j.pharmthera.2019.05.010
Arana A, Wentworth CE, Ayuso-Mateos JL, Arellano FM. Suicide-related events in patients treated with antiepileptic drugs. N Engl J Med. 2010;363:542–51.
pubmed: 20818889 doi: 10.1056/NEJMoa0909801
Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26:331–43.
pubmed: 14729135 doi: 10.1016/j.jchemneu.2003.10.002
Kawashima T, Zwart MF, Yang CT, Mensh BD, Ahrens MB. The serotonergic system tracks the outcomes of actions to mediate short-term motor learning. Cell. 2016;167:933–46 e20.
pubmed: 27881303 doi: 10.1016/j.cell.2016.09.055
Andalman AS, Burns VM, Lovett-Barron M, Broxton M, Poole B, Yang SJ, et al. Neuronal dynamics regulating brain and behavioral state transitions. Cell. 2019;177:970–85 e20.
pubmed: 31031000 pmcid: 6726130 doi: 10.1016/j.cell.2019.02.037
Pollak Dorocic I, Furth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, et al. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron. 2014;83:663–78.
pubmed: 25102561 doi: 10.1016/j.neuron.2014.07.002
Commons KG. Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct. 2016;221:3347–60.
pubmed: 26740230 pmcid: 4935641 doi: 10.1007/s00429-015-1176-7
Brust RD, Corcoran AE, Richerson GB, Nattie E, Dymecki SM. Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep. 2014;9:2152–65.
pubmed: 25497093 pmcid: 4351711 doi: 10.1016/j.celrep.2014.11.027
Mason P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci. 2001;24:737–77.
pubmed: 11520917 doi: 10.1146/annurev.neuro.24.1.737
Sos KE, Mayer MI, Cserep C, Takacs FS, Szonyi A, Freund TF, et al. Cellular architecture and transmitter phenotypes of neurons of the mouse median raphe region. Brain Struct Funct. 2017;222:287–99.
pubmed: 27044051 doi: 10.1007/s00429-016-1217-x
Millan MJ, Marin P, Bockaert J, Mannoury la Cour C. Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci. 2008;29:454–64.
pubmed: 18676031 doi: 10.1016/j.tips.2008.06.007
Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A, et al. Fast synaptic subcortical control of hippocampal circuits. Science. 2009;326:449–53.
pubmed: 19833972 doi: 10.1126/science.1178307
Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, et al. Hippocampal 5-HT input regulates memory formation and schaffer collateral excitation. Neuron. 2018;98:992–1004 e4.
pubmed: 29754752 pmcid: 6383566 doi: 10.1016/j.neuron.2018.04.030
Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex. 2012;22:1487–97.
pubmed: 21893679 doi: 10.1093/cercor/bhr220
Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL. 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology. 2005;49:1228–34.
pubmed: 16229866 doi: 10.1016/j.neuropharm.2005.09.003
Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F. The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem. 2005;95:1597–607.
pubmed: 16277612 doi: 10.1111/j.1471-4159.2005.03485.x
Okaty BW, Commons KG, Dymecki SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci. 2019;20:397–424.
pubmed: 30948838 doi: 10.1038/s41583-019-0151-3
Padou V, Boyet S, Nehlig A. Changes in transport of [
pubmed: 8991784 doi: 10.1016/0920-1211(95)00046-1
Mueller SG, Bateman LM, Laxer KD. Evidence for brainstem network disruption in temporal lobe epilepsy and sudden unexplained death in epilepsy. Neuroimage Clin. 2014;5:208–16.
pubmed: 25068110 pmcid: 4110882 doi: 10.1016/j.nicl.2014.06.010
Englot DJ, D’Haese P-F, Konrad PE, Jacobs ML, Gore JC, Abou-Khalil BW, et al. Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2017;88:925–32.
pubmed: 28630376 doi: 10.1136/jnnp-2017-315732
Zhan Q, Buchanan GF, Motelow JE, Andrews J, Vitkovskiy P, Chen WC, et al. Impaired serotonergic brainstem function during and after seizures. J Neurosci. 2016;36:2711–22.
pubmed: 26937010 pmcid: 4879214 doi: 10.1523/JNEUROSCI.4331-15.2016
Totola LT, Malheiros-Lima MR, Delfino-Pereira P, Del Vecchio F, Souza FC, Takakura AC, et al. Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res. 2019;1718:159–68.
pubmed: 31100215 doi: 10.1016/j.brainres.2019.05.015
Lörincz M, Oláh M, Baracskay P, Szilágyi N, Juhász G. Propagation of spike and wave activity to the medial prefrontal cortex and dorsal raphe nucleus of WAG/Rij rats. Physiol Behav. 2007;90:318–24.
pubmed: 17107694 doi: 10.1016/j.physbeh.2006.09.020
Cheng H, Qi Y, Lai N, Yang L, Xu C, Wang S, et al. Inhibition of hyperactivity of the dorsal raphe 5-HTergic neurons ameliorates hippocampal seizure. CNS Neurosci Ther. 2021;27:963–72.
pubmed: 33955651 pmcid: 8265946 doi: 10.1111/cns.13648
Lin WH, Huang HP, Lin MX, Chen SG, Lv XC, Che CH, et al. Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci Lett. 2013;534:1–6.
pubmed: 23276638 doi: 10.1016/j.neulet.2012.12.007
Maia GH, Soares JI, Andrade PA, Leite JF, Luz LL, Andrade JP, et al. Altered taste preference and loss of limbic-projecting serotonergic neurons in the dorsal raphe nucleus of chronically epileptic rats. Behav Brain Res. 2016;297:28–36.
pubmed: 26456522 doi: 10.1016/j.bbr.2015.10.010
Maia GH, Soares JI, Almeida SG, Leite JM, Baptista HX, Lukoyanova AN, et al. Altered serotonin innervation in the rat epileptic brain. Brain Res Bull. 2019;152:95–106.
Ma DL, Tang YC, Chen PM, Chia SC, Jiang FL, Burgunder JM, et al. Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway. J Neurosci Res. 2006;83:318–31.
pubmed: 16385555 doi: 10.1002/jnr.20731
Hayashi M, Itoh M, Araki S, Kumada S, Tanuma N, Kohji T, et al. Immunohistochemical analysis of brainstem lesions in infantile spasms. Neuropathology. 2000;20:297–303.
pubmed: 11211054 doi: 10.1111/j.1440-1789.2000.00353.x
Mazarati A, Siddarth P, Baldwin RA, Shin D, Caplan R, Sankar R. Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine. Brain. 2008;131:2071–83.
pubmed: 18559371 pmcid: 2587254 doi: 10.1093/brain/awn117
Hatini PG, Commons KG. Serotonin abnormalities in Dravet syndrome mice before and after the age of seizure onset. Brain Res. 2019;1724:146399.
pubmed: 31445030 pmcid: 6922539 doi: 10.1016/j.brainres.2019.146399
Szot P, Reigel CE, White SS, Veith RC. Alterations in mRNA expression of systems that regulate neurotransmitter synaptic content in seizure-naive genetically epilepsy-prone rat (GEPR): transporter proteins and rate-limiting synthesizing enzymes for norepinephrine, dopamine and serotonin. Brain Res Mol Brain Res. 1996;43:233–45.
pubmed: 9037538 doi: 10.1016/S0169-328X(96)00184-2
Lin WH, Li XF, Lin MX, Zhou Y, Huang HP. Novel insights into the effect of paroxetine administration in pilocarpine‑induced chronic epileptic rats. Mol Med Rep. 2017;16:8245–52.
pubmed: 28983622 doi: 10.3892/mmr.2017.7659
Toczek MT, Carson RE, Lang L, Ma Y, Spanaki MV, Der MG, et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology. 2003;60:749–56.
pubmed: 12629228 doi: 10.1212/01.WNL.0000049930.93113.20
Savic I, Lindström P, Gulyás B, Halldin C, Andrée B, Farde L. Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology. 2004;62:1343–51.
pubmed: 15111672 doi: 10.1212/01.WNL.0000123696.98166.AF
Giovacchini G, Toczek MT, Bonwetsch R, Bagic A, Lang L, Fraser C, et al. 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J Nucl Med. 2005;46:1128–35.
pubmed: 16000281
Meschaks A, Lindstrom P, Halldin C, Farde L, Savic I. Regional reductions in serotonin 1A receptor binding in juvenile myoclonic epilepsy. Arch Neurol. 2005;62:946–50.
pubmed: 15956165 doi: 10.1001/archneur.62.6.946
Palomero-Gallagher N, Schleicher A, Bidmon HJ, Pannek HW, Hans V, Gorji A, et al. Multireceptor analysis in human neocortex reveals complex alterations of receptor ligand binding in focal epilepsies. Epilepsia. 2012;53:1987–97.
pubmed: 22957946 doi: 10.1111/j.1528-1167.2012.03634.x
Kalynchuk LE, Pinel JP, Meaney MJ. Serotonin receptor binding and mRNA expression in the hippocampus of fearful amygdala-kindled rats. Neurosci Lett. 2006;396:38–43.
pubmed: 16324784 doi: 10.1016/j.neulet.2005.11.005
Gilling KE, Oltmanns F, Behr J. Impaired maturation of serotonergic function in the dentate gyrus associated with epilepsy. Neurobiol Dis. 2013;50:86–95.
pubmed: 23072977 doi: 10.1016/j.nbd.2012.10.012
Krishnakumar A, Anju TR, Abraham PM, Paulose CS. Alteration in 5-HT(2)C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri. Neurochem Res. 2015;40:216–25.
pubmed: 25503823 doi: 10.1007/s11064-014-1472-2
Arbabi Jahan A, Rad A, Ghanbarabadi M, Amin B, Mohammad-Zadeh M. The role of serotonin and its receptors on the anticonvulsant effect of curcumin in pentylenetetrazol-induced seizures. Life Sci. 2018;211:252–60.
pubmed: 30243647 doi: 10.1016/j.lfs.2018.09.007
Yang Z, Liu X, Yin Y, Sun S, Deng X. Involvement of 5-HT(7) receptors in the pathogenesis of temporal lobe epilepsy. Eur J Pharmacol. 2012;685:52–8.
pubmed: 22543085 doi: 10.1016/j.ejphar.2012.04.011
Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995;374:542–6.
pubmed: 7700379 doi: 10.1038/374542a0
Brennan TJ, Seeley WW, Kilgard M, Schreiner CE, Tecott LH. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat Genet. 1997;16:387–90.
pubmed: 9241279 doi: 10.1038/ng0897-387
Applegate CD, Tecott LH. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol. 1998;154:522–30.
pubmed: 9878187 doi: 10.1006/exnr.1998.6901
Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA. 2000;97:14731–6.
pubmed: 11121072 pmcid: 18987 doi: 10.1073/pnas.97.26.14731
Witkin JM, Baez M, Yu J, Barton ME, Shannon HE. Constitutive deletion of the serotonin-7 (5-HT(7)) receptor decreases electrical and chemical seizure thresholds. Epilepsy Res. 2007;75:39–45.
pubmed: 17485199 doi: 10.1016/j.eplepsyres.2007.03.017
Schenkel LC, Bragatti JA, Becker JA, Torres CM, Martin KC, de Souza AC, et al. Serotonin gene polymorphisms and psychiatry comorbidities in temporal lobe epilepsy. Epilepsy Res. 2012;99:260–6.
pubmed: 22222329 doi: 10.1016/j.eplepsyres.2011.12.005
Buchanan GF, Murray NM, Hajek MA, Richerson GB. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality. J Physiol. 2014;592:4395–410.
pubmed: 25107926 pmcid: 4215784 doi: 10.1113/jphysiol.2014.277574
Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL. A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology. 2007;195:147–66.
pubmed: 17712549 doi: 10.1007/s00213-007-0910-0
Li J, Lin H, Zhu X, Li L, Wang X, Sun W, et al. Association study of functional polymorphisms in serotonin transporter gene with temporal lobe epilepsy in Han Chinese population. Eur J Neurol. 2012;19:351–3.
pubmed: 21951270 doi: 10.1111/j.1468-1331.2011.03521.x
Hatini PG, Commons KG. A 5-HT1D -receptor agonist protects Dravet syndrome mice from seizure and early death. Eur J Neurosci. 2020;52:4370–4.
pubmed: 32394465 pmcid: 7655614 doi: 10.1111/ejn.14776
Cavalheiro EA, Elisabetsky E, Campos CJ. Effect of brain serotonin level on induced hippocampal paroxysmal activity in rats. Pharmacol Biochem Behav. 1981;15:363–6.
pubmed: 6457305 doi: 10.1016/0091-3057(81)90263-X
Trindade-Filho EM, de Castro-Neto EF, de A, Carvalho R, Lima E, Scorza FA, et al. Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res. 2008;82:194–9.
pubmed: 18845420 doi: 10.1016/j.eplepsyres.2008.08.010
Lerner-Natoli M. Serotonin and kindling development. Int J Neurosci. 1987;36:139–51.
pubmed: 3667104 doi: 10.3109/00207458709058789
Clough R, Statnick M, Maring-Smith M, Wang C, Eells J, Browning R, et al. Fetal raphe transplants reduce seizure severity in serotonin-depleted GEPRs. Neuroreport. 1996;8:341–6.
pubmed: 9051807 doi: 10.1097/00001756-199612200-00067
Statnick MA, Maring-Smith ML, Clough RW, Wang C, Dailey JW, Jobe PC, et al. Effect of 5,7-dihydroxytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci. 1996;59:1763–71.
pubmed: 8937503 doi: 10.1016/0024-3205(96)00519-X
Cunningham JT, Mifflin SW, Gould GG, Frazer A. Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by Vagal nerve stimulation. Neuropsychopharmacology. 2008;33:1884–95.
pubmed: 17957222 doi: 10.1038/sj.npp.1301570
Manta S, Dong J, Debonnel G, Blier P. Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe. Eur Neuropsychopharmacol. 2009;19:250–5.
pubmed: 19150228 doi: 10.1016/j.euroneuro.2008.12.001
Manta S, El Mansari M, Blier P. Novel attempts to optimize vagus nerve stimulation parameters on serotonin neuronal firing activity in the rat brain. Brain Stimul. 2012;5:422–9.
pubmed: 22037140 doi: 10.1016/j.brs.2011.04.005
Manta S, Dong J, Debonnel G, Blier P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J Psychiatry Neurosci. 2009;34:272–80.
pubmed: 19568478 pmcid: 2702444
Manta S, El Mansari M, Debonnel G, Blier P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol. 2013;16:459–70.
pubmed: 22717062 doi: 10.1017/S1461145712000387
Guedes RCA, Araújo MDGRD, Verçosa TC, Bion FM, de Sá AL, Pereira A, et al. Evidence of an inverse correlation between serotonergic activity and spreading depression propagation in the rat cortex. Brain Res. 2017;1672:29–34.
pubmed: 28751192 doi: 10.1016/j.brainres.2017.07.011
Kovacs DA, Zoll JG. Seizure inhibition by median raphe nucleus stimulation in rat. Brain Res. 1974;70:165–9.
pubmed: 4822045 doi: 10.1016/0006-8993(74)90224-8
Sabatino M, Ferraro G, La Grutta V. Relay stations and neurotransmitters between the pallidal region and the hippocampus. Electroencephalogr Clin Neurophysiol. 1991;78:302–10.
pubmed: 1706252 doi: 10.1016/0013-4694(91)90185-7
Michele S, Vella N, Ferraro G, Gravante G, La Grutta V. Neurotransmitters involved in the habenular control of raphe-hippocampal circuit. Pharmacol Res. 1989;21:39–40. Suppl 1
pubmed: 2576686 doi: 10.1016/S1043-6618(89)80042-8
Alhaj MW, Zaitone SA, Moustafa YM. Fluvoxamine alleviates seizure activity and downregulates hippocampal GAP-43 expression in pentylenetetrazole-kindled mice: role of 5-HT3 receptors. Behav Pharmacol. 2015;26:369–82.
doi: 10.1097/FBP.0000000000000127
Kanner AM. Most antidepressant drugs are safe for patients with epilepsy at therapeutic doses: A review of the evidence. Epilepsy Behav. 2016;61:282–6.
pubmed: 27236241 doi: 10.1016/j.yebeh.2016.03.022
Frye CA, Muscatiello NA. 3alpha,5alpha-THP in the raphe magnus attenuates PTZ-induced myoclonic seizures. Brain Res. 2001;911:146–51.
pubmed: 11511382 doi: 10.1016/S0006-8993(01)02560-4
Behr J, Heinemann U. Effects of serotonin on different patterns of low Mg
pubmed: 8930386 doi: 10.1016/0006-8993(96)00946-8
Petersen AV, Jensen CS, Crépel V, Falkerslev M, Perrier J-F. Serotonin regulates the firing of principal cells of the subiculum by inhibiting a T-type Ca current. Front Cell Neurosci. 2017;11:60.
pubmed: 28326015 pmcid: 5339341 doi: 10.3389/fncel.2017.00060
Gentsch K, Heinemann U, Schmitz B, Behr J. Fenfluramine blocks low-Mg
pubmed: 10961615 doi: 10.1111/j.1528-1157.2000.tb00273.x
Deng PY, Lei S. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K
pubmed: 18687403 pmcid: 2634291 doi: 10.1016/j.mcn.2008.07.005
Bobula B, Zahorodna A, Bijak M. Different receptor subtypes are involved in the serotonin-induced modulation of epileptiform activity in rat frontal cortex in vitro. J Physiol Pharmacol. 2001;52:265–74.
pubmed: 11453105
Zhang H, Zhao H, Zeng C, Van Dort C, Faingold CL, Taylor NE, et al. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol Dis. 2018;110:47–58.
pubmed: 29141182 doi: 10.1016/j.nbd.2017.11.003
Tao W-W, Cai X-T, Shen J, Shi X-G, Wang Y. Hypoechogenicity of brainstem raphe correlates with depression in migraine patients. J Headache Pain. 2019;20:53.
pubmed: 31092190 pmcid: 6734523 doi: 10.1186/s10194-019-1011-2
Li HL, Deng ZR, Zhang J, Ding CH, Shi XG, Wang L, et al. Sonographic hypoechogenicity of brainstem raphe nucleus is correlated with electroencephalographic spike frequency in patients with epilepsy. Epilepsy Behav. 2021;117:107884.
pubmed: 33714930 doi: 10.1016/j.yebeh.2021.107884
Lothe A, Didelot A, Hammers A, Costes N, Saoud M, Gilliam F, et al. Comorbidity between temporal lobe epilepsy and depression: a [
pubmed: 18765418 pmcid: 6276903 doi: 10.1093/brain/awn194
Medel-Matus JS, Shin D, Sankar R, Mazarati A. Inherent vulnerabilities in monoaminergic pathways predict the emergence of depressive impairments in an animal model of chronic epilepsy. Epilepsia. 2017;58:e116–e21.
pubmed: 28597913 pmcid: 5554075 doi: 10.1111/epi.13822
Medel-Matus JS, Shin D, Sankar R, Mazarati A. Galanin contributes to monoaminergic dysfunction and to dependent neurobehavioral comorbidities of epilepsy. Exp Neurol. 2017;289:64–72.
pubmed: 28013000 doi: 10.1016/j.expneurol.2016.12.008
Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM. Plasticity of presynaptic and postsynaptic serotonin 1A receptors in an animal model of epilepsy-associated depression. Neuropsychopharmacology. 2011;36:1305–16.
pubmed: 21346733 pmcid: 3077437 doi: 10.1038/npp.2011.18
Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R. Comorbidity between epilepsy and depression: role of hippocampal interleukin-1beta. Neurobiol Dis. 2010;37:461–7.
pubmed: 19900553 doi: 10.1016/j.nbd.2009.11.001
Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM. Interleukin-1β causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics. 2012;9:477–85.
pubmed: 22427156 pmcid: 3337012 doi: 10.1007/s13311-012-0110-4
Kumar U, Medel-Matus JS, Redwine HM, Shin D, Hensler JG, Sankar R, et al. Effects of selective serotonin and norepinephrine reuptake inhibitors on depressive- and impulsive-like behaviors and on monoamine transmission in experimental temporal lobe epilepsy. Epilepsia. 2016;57:506–15.
pubmed: 26813337 pmcid: 4783206 doi: 10.1111/epi.13321
Shorvon S, Tomson T. Sudden unexpected death in epilepsy. Lancet. 2011;378:2028–38.
pubmed: 21737136 doi: 10.1016/S0140-6736(11)60176-1
Mueller SG, Nei M, Bateman LM, Knowlton R, Laxer KD, Friedman D, et al. Brainstem network disruption: A pathway to sudden unexplained death in epilepsy? Hum Brain Mapp. 2018;39:4820–30.
pubmed: 30096213 pmcid: 6866413 doi: 10.1002/hbm.24325
Patodia S, Tan I, Ellis M, Somani A, Scheffer IE, Sisodiya SM, et al. Medullary tyrosine hydroxylase catecholaminergic neuronal populations in sudden unexpected death in epilepsy. Brain Pathol. 2021;31:133–43.
pubmed: 32852867 doi: 10.1111/bpa.12891
Patodia S, Somani A, O’Hare M, Venkateswaran R, Liu J, Michalak Z, et al. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain. 2018;141:1719–33.
pubmed: 29608654 pmcid: 5972615 doi: 10.1093/brain/awy078
Patodia S, Paradiso B, Ellis M, Somani A, Sisodiya SM, Devinsky O, et al. Characterisation of medullary astrocytic populations in respiratory nuclei and alterations in sudden unexpected death in epilepsy. Epilepsy Res. 2019;157:106213.
pubmed: 31610338 pmcid: 7002840 doi: 10.1016/j.eplepsyres.2019.106213
Petrucci AN, Joyal KG, Chou JW, Li R, Vencer KM, Buchanan GF. Post-ictal generalized EEG suppression is reduced by enhancing dorsal raphe serotonergic neurotransmission. Neuroscience. 2021;453:206–21.
pubmed: 33242541 doi: 10.1016/j.neuroscience.2020.11.029
Kommajosyula SP, Randall ME, Brozoski TJ, Odintsov BM, Faingold CL. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): A manganese-enhanced magnetic resonance imaging study. Epilepsy Res. 2017;135:87–94.
pubmed: 28646692 doi: 10.1016/j.eplepsyres.2017.05.011
Uteshev VV, Tupal S, Mhaskar Y, Faingold CL. Abnormal serotonin receptor expression in DBA/2 mice associated with susceptibility to sudden death due to respiratory arrest. Epilepsy Res. 2010;88:183–8.
pubmed: 20018491 doi: 10.1016/j.eplepsyres.2009.11.004
Pineda E, Jentsch JD, Shin D, Griesbach G, Sankar R, Mazarati A. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention-deficit/hyperactivity disorder. Epilepsy Behav. 2014;31:267–75.
pubmed: 24262783 doi: 10.1016/j.yebeh.2013.10.004
McMahon JJ, Yu W, Yang J, Feng H, Helm M, McMahon E, et al. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice. Neurobiol Dis. 2015;73:296–306.
pubmed: 25315683 doi: 10.1016/j.nbd.2014.10.004
Neuman RS, Thompson PM. Serotonin mediates suppression of focal epileptiform activity induced by noxious stimulation. Epilepsia. 1989;30:307–13.
pubmed: 2498071 doi: 10.1111/j.1528-1157.1989.tb05302.x
Thompson PM, Zebrowski G, Neuman RS. Alteration of neocortical activity in response to noxious stimulation: participation of the dorsal raphe. Neuropharmacology. 1991;30:135–41.
pubmed: 1827661 doi: 10.1016/0028-3908(91)90196-I
de Oliveira RC, de Oliveira R, Biagioni AF, Falconi-Sobrinho LL, Coimbra NC. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors. Brain Res. 2016;1631:80–91.
pubmed: 26620541 doi: 10.1016/j.brainres.2015.11.014
Freitas RL, Ferreira CM, Ribeiro SJ, Carvalho AD, Elias-Filho DH, Garcia-Cairasco N, et al. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study. Exp Neurol. 2005;191:225–42.
pubmed: 15649478 doi: 10.1016/j.expneurol.2004.10.009
Freitas RL, Bassi GS, de Oliveira AM, Coimbra NC. Serotonergic neurotransmission in the dorsal raphe nucleus recruits in situ 5-HT(2A/2C) receptors to modulate the post-ictal antinociception. Exp Neurol. 2008;213:410–8.
pubmed: 18671968 doi: 10.1016/j.expneurol.2008.07.003
Freitas RL, Ferreira CM, Urbina MA, Marino AU, Carvalho AD, Butera G, et al. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus. Exp Neurol. 2009;217:16–24.
pubmed: 19416688 doi: 10.1016/j.expneurol.2009.01.003
de Oliveira RC, de Oliveira R, Ferreira CM, Coimbra NC. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. Exp Neurol. 2006;201:144–53.
pubmed: 16842781 doi: 10.1016/j.expneurol.2006.03.033
Carlton SM, Leichnetz GR, Young EG, Mayer DJ. Supramedullary afferents of the nucleus raphe magnus in the rat: a study using the transcannula HRP gel and autoradiographic techniques. J Comp Neurol. 1983;214:43–58.
pubmed: 6841675 doi: 10.1002/cne.902140105

Auteurs

He-Ming Cheng (HM)

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Chen-Shu Gao (CS)

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Qiu-Wen Lou (QW)

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Zhong Chen (Z)

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Yi Wang (Y)

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China. wang-yi@zju.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH