VISPNN: VGG-inspired Stochastic Pooling Neural Network.
VGG
alcoholism
convolutional neural network
deep learning
multiple-way data augmentation
stochastic pooling
Journal
Computers, materials & continua
ISSN: 1546-2226
Titre abrégé: Comput Mater Contin
Pays: United States
ID NLM: 9918400687906676
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
26
5
2022
pubmed:
27
5
2022
medline:
27
5
2022
Statut:
ppublish
Résumé
Alcoholism is a disease that a patient becomes dependent or addicted to alcohol. This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately. We propose the VGG-Inspired stochastic pooling neural network (VISPNN) model based on three components: (i) a VGG-inspired mainstay network, (ii) the stochastic pooling technique, which aims to outperform traditional max pooling and average pooling, and (iii) an improved 20-way data augmentation (Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, horizontal shear, vertical shear, rotation, Gamma correction, random translation, and scaling on both raw image and its horizontally mirrored image). In addition, two networks (Net-I and Net-II) are proposed in ablation studies. Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling. Net-II removes the 20-way data augmentation. The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32, a specificity of 97.80±1.35, a precision of 97.78±1.35, an accuracy of 97.89±1.11, an F1 score of 97.87±1.12, an MCC of 95.79±2.22, an FMI of 97.88±1.12, and an AUC of 0.9849, respectively. The performance of our VISPNN model is better than two internal networks (Net-I and Net-II) and ten state-of-the-art alcoholism recognition methods.
Identifiants
pubmed: 35615529
doi: 10.32604/cmc.2022.019447
pmc: PMC7612766
mid: EMS144638
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3081-3097Subventions
Organisme : British Heart Foundation
ID : AA/18/3/34220
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17171
Pays : United Kingdom
Déclaration de conflit d'intérêts
Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.
Références
Front Cell Infect Microbiol. 2021 Mar 11;11:633194
pubmed: 33777846
Transl Psychiatry. 2021 Jan 14;11(1):54
pubmed: 33446638
Health Inf Sci Syst. 2021 Feb 6;9(1):9
pubmed: 33604030
J Med Syst. 2017 Nov 17;42(1):2
pubmed: 29159706
J Biochem Mol Toxicol. 2021 Jun;35(6):1-15
pubmed: 33645892
Front Neuroanat. 2018 Dec 11;12:108
pubmed: 30618652
J Med Syst. 2017 Aug 31;41(10):157
pubmed: 28861680
Brain Sci. 2020 Jun 07;10(6):
pubmed: 32517334
Front Psychiatry. 2019 Apr 11;10:205
pubmed: 31031657
Front Syst Neurosci. 2020 Dec 11;14:606345
pubmed: 33362482
Comput Math Methods Med. 2021 Mar 08;2021:6633755
pubmed: 33777167
Behav Sci (Basel). 2020 Mar 01;10(3):
pubmed: 32121585